当前位置: X-MOL 学术Environ. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Genomic mosaicism underlies the adaptation of marine Synechococcus ecotypes to distinct oceanic iron niches.
Environmental Microbiology ( IF 4.3 ) Pub Date : 2019-12-27 , DOI: 10.1111/1462-2920.14893
Nathan A Ahlgren 1 , Bernard Shafer Belisle 1 , Michael D Lee 2, 3
Affiliation  

Phytoplankton are limited by iron (Fe) in ~40% of the world's oceans including high-nutrient low-chlorophyll (HNLC) regions. While low-Fe adaptation has been well-studied in large eukaryotic diatoms, less is known for small, prokaryotic marine picocyanobacteria. This study reveals key physiological and genomic differences underlying Fe adaptation in marine picocyanobacteria. HNLC ecotype CRD1 strains have greater physiological tolerance to low Fe congruent with their expanded repertoire of Fe transporter, storage and regulatory genes compared to other ecotypes. From metagenomic analysis, genes encoding ferritin, flavodoxin, Fe transporters and siderophore uptake genes were more abundant in low-Fe waters, mirroring paradigms of low-Fe adaptation in diatoms. Distinct Fe-related gene repertories of HNLC ecotypes CRD1 and CRD2 also highlight how coexisting ecotypes have evolved independent approaches to life in low-Fe habitats. Synechococcus and Prochlorococcus HNLC ecotypes likewise exhibit independent, genome-wide reductions of predicted Fe-requiring genes. HNLC ecotype CRD1 interestingly was most similar to coastal ecotype I in Fe physiology and Fe-related gene content, suggesting populations from these different biomes experience similar Fe-selective conditions. This work supports an improved perspective that phytoplankton are shaped by more nuanced Fe niches in the oceans than previously implied from mostly binary comparisons of low- versus high-Fe habitats and populations.

中文翻译:

基因组镶嵌学是海洋Synchococcus生态型适应不同海洋铁生态位的基础。

在全球约40%的海洋中,包括高营养低叶绿素(HNLC)地区,浮游植物受到铁(Fe)的限制。虽然在大型真核硅藻中已经充分研究了低铁的适应性,但对于小型原核海洋微蓝细菌却知之甚少。这项研究揭示了海洋微蓝细菌中铁适应的关键生理和基因组差异。与其他生态型相比,HNLC生态型CRD1菌株通过扩展其Fe转运蛋白,贮藏和调控基因的组成,对低铁具有更高的生理耐受性。根据宏基因组学分析,在低铁水中,编码铁蛋白,黄素毒素,铁转运蛋白和铁载体摄取基因的基因更加丰富,这反映了硅藻中低铁适应性的范例。HNLC生态型CRD1和CRD2的不同的铁相关基因库也突显了共存的生态型如何在低铁生境中发展出独立的生活方法。Synechococcus和Prochlorococcus HNLC生态型同样表现出独立的,全基因组范围内预测的需要Fe的基因减少。有趣的是,HNLC生态型CRD1与沿海生态型I在铁生理和铁相关基因含量方面最为相似,这表明来自这些不同生物群落的种群经历了类似的铁选择性条件。这项工作支持了一种改进的观点,即浮游植物是由海洋中更多细微的铁壁形成的,这比以前对低铁和高铁的生境和种群进行的大多数二元比较所暗示的要好。Synechococcus和Prochlorococcus HNLC生态型同样表现出独立的,全基因组范围内预测的需要Fe的基因减少。有趣的是,HNLC生态型CRD1与沿海生态型I在铁生理和铁相关基因含量方面最为相似,这表明来自这些不同生物群落的种群经历了类似的铁选择性条件。这项工作支持了一种改进的观点,即浮游植物是由海洋中更多细微的铁壁形成的,这比以前对低铁和高铁的生境和种群进行的大多数二元比较所暗示的要好。Synechococcus和Prochlorococcus HNLC生态型同样表现出独立的,全基因组范围内预测的需要Fe的基因减少。有趣的是,HNLC生态型CRD1与沿海生态型I在铁生理和铁相关基因含量方面最为相似,这表明来自这些不同生物群落的种群经历了类似的铁选择性条件。这项工作支持了一种改进的观点,即浮游植物是由海洋中更多细微的铁壁形成的,这比以前对低铁和高铁的生境和种群进行的大多数二元比较所暗示的要好。这表明来自这些不同生物群落的种群经历了相似的铁选择性条件。这项工作支持了一种改进的观点,即浮游植物是由海洋中更多细微的铁壁形成的,这比以前对低铁和高铁的生境和种群进行的大多数二元比较所暗示的要好。这表明来自这些不同生物群落的种群经历了相似的铁选择性条件。这项工作支持了一种改进的观点,即浮游植物是由海洋中更多细微的铁壁形成的,这比以前对低铁和高铁的生境和种群进行的大多数二元比较所暗示的要好。
更新日期:2019-12-27
down
wechat
bug