当前位置: X-MOL 学术Sustain. Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of a nanocavity structure with a carrier-selective layer for enhancement of photocatalytic hydrogen production performance
Sustainable Energy & Fuels ( IF 5.0 ) Pub Date : 2019-12-14 , DOI: 10.1039/c9se00987f
Qin Lei 1, 2, 3, 4 , Rongzhi Chen 1, 2, 3, 4, 5 , Jihua Tan 1, 2, 3, 4 , Xinxin Long 1, 2, 3, 4 , Huanyu Chen 1, 2, 3, 4 , Xinming Wang 1, 2, 3, 4, 5 , Jingfu Liu 1, 2, 3, 4, 6 , Zhongfang Lei 7, 8, 9, 10 , Zhenya Zhang 7, 8, 9, 10
Affiliation  

Efficient solar energy capture and utilization is of great importance in various photoenergy conversion systems, such as solar cells and photocatalysts. Herein, we reported a photocatalytic enhancement system by constructing a nanocavity structure with a carrier-selective layer. The photocatalytic hydrogen production activity is improved by ∼13.8 times in comparison to that of Au/CdS due to the construction of a nanocavity structure with a carrier-selective layer, in which the nanocavity structure is mainly used to enhance the utilization efficiency for solar light in the photocatalytic system. The Au–S layer on the one hand effectively transfers the holes, which extends the lifetime of the active species in the semiconductor photocatalyst to accelerate the hydrogen production reaction. On the other hand, it changes the electron transfer pathway between CdS and Au nanoparticles. This system achieved an optimal H2-evolution rate of 0.55 mmol h−1 under visible light irradiation, and its apparent quantum efficiency (AQE) reached 19.1% at 430 nm. As a novel strategy, our study may provide a new design protocol for highly efficient photocatalytic systems.

中文翻译:

具有载体选择层的纳米腔结构的构建,用于增强光催化制氢性能

在各种光能转换系统(例如太阳能电池和光催化剂)中,高效的太阳能捕获和利用非常重要。在本文中,我们报道了通过构建具有载流子选择层的纳米腔结构的光催化增强系统。与Au / CdS相比,光催化制氢活性提高了约13.8倍,这是由于构建了带有载流子选择层的纳米腔结构,其中纳米腔结构主要用于提高太阳光的利用效率。在光催化系统中。一方面,Au–S层有效地转移了空穴,从而延长了半导体光催化剂中活性物质的寿命,从而加速了制氢反应。另一方面,它改变了CdS和Au纳米粒子之间的电子转移路径。该系统实现了最佳H可见光照射下的2-演化速率为0.55 mmol h -1,其表观量子效率(AQE)在430 nm处达到19.1%。作为一种新颖的策略,我们的研究可能会为高效的光催化系统提供一种新的设计方案。
更新日期:2019-12-14
down
wechat
bug