当前位置: X-MOL 学术Nat. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices
Nature Photonics ( IF 32.3 ) Pub Date : 2019-12-16 , DOI: 10.1038/s41566-019-0562-8
Lukas J. Maczewsky , Kai Wang , Alexander A. Dovgiy , Andrey E. Miroshnichenko , Alexander Moroz , Max Ehrhardt , Matthias Heinrich , Demetrios N. Christodoulides , Alexander Szameit , Andrey A. Sukhorukov

The excitation dynamics in complex networks1 can describe the fundamental aspects of transport and localization across multiple fields of science, ranging from solid-state physics and photonics to biological signalling pathways and neuromorphic circuits2,3,4,5. Although the effects of increasing network dimensionality are highly non-trivial, their implementation likewise becomes ever more challenging due to the exponentially growing numbers of sites and connections6,7,8. To address these challenges, we formulate a universal approach for mapping arbitrary networks to synthesized one-dimensional lattices with strictly local inhomogeneous couplings, where the dynamics at the excited site is exactly replicated. We present direct experimental observations in judiciously designed planar photonic structures, showcasing non-monotonic excitation decays associated with up to seven-dimensional hypercubic lattices, and demonstrate a novel sharp localization transition specific to four and higher dimensions. The unprecedented capability of experimentally exploring multi-dimensional dynamics and harnessing their unique features in one-dimensional lattices can find multiple applications in diverse physical systems, including photonic integrated circuits.



中文翻译:

合成一维晶格中的多维激发动力学和局部转变

复杂网络1中的激发动力学可以描述跨多个科学领域的运输和定位的基本方面,范围从固态物理学和光子学到生物信号通路和神经形态电路2,3,4,5。尽管增加网络维数的影响非常重要,但由于站点和连接数量呈指数级增长,因此其实现同样变得越来越具有挑战性6,7,8。为了解决这些挑战,我们制定了一种通用方法,用于将任意网络映射到具有严格局部不均匀耦合的合成一维晶格,其中精确复制了受激部位的动力学。我们在精心设计的平面光子结构中呈现直接的实验观察结果,展示了与多达七维超立方晶格相关的非单调激发衰变,并展示了特定于四维和更高维的新型尖锐的局部跃迁。实验上探索多维动力学并利用其在一维晶格中的独特功能的空前能力可以在包括光子集成电路在内的各种物理系统中找到多种应用。

更新日期:2019-12-17
down
wechat
bug