当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Artificial water channels enable fast and selective water permeation through water-wire networks.
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2019-12-16 , DOI: 10.1038/s41565-019-0586-8
Woochul Song 1, 2 , Himanshu Joshi 3 , Ratul Chowdhury 1 , Joseph S Najem 4, 5 , Yue-Xiao Shen 6 , Chao Lang 1 , Codey B Henderson 7 , Yu-Ming Tu 1, 2 , Megan Farell 1 , Megan E Pitz 4 , Costas D Maranas 1 , Paul S Cremer 7 , Robert J Hickey 8 , Stephen A Sarles 4 , Jun-Li Hou 9 , Aleksei Aksimentiev 3 , Manish Kumar 1, 10, 11, 12
Affiliation  

Artificial water channels are synthetic molecules that aim to mimic the structural and functional features of biological water channels (aquaporins). Here we report on a cluster-forming organic nanoarchitecture, peptide-appended hybrid[4]arene (PAH[4]), as a new class of artificial water channels. Fluorescence experiments and simulations demonstrated that PAH[4]s can form, through lateral diffusion, clusters in lipid membranes that provide synergistic membrane-spanning paths for a rapid and selective water permeation through water-wire networks. Quantitative transport studies revealed that PAH[4]s can transport >109 water molecules per second per molecule, which is comparable to aquaporin water channels. The performance of these channels exceeds the upper bound limit of current desalination membranes by a factor of ~104, as illustrated by the water/NaCl permeability-selectivity trade-off curve. PAH[4]'s unique properties of a high water/solute permselectivity via cooperative water-wire formation could usher in an alternative design paradigm for permeable membrane materials in separations, energy production and barrier applications.

中文翻译:

人工水道可以通过水线网络实现快速和选择性的水渗透。

人工水道是一种合成分子,旨在模仿生物水道(水通道蛋白)的结构和功能特征。在这里,我们报告了一种形成簇的有机纳米结构,即肽附加杂化 [4] 芳烃 (PAH[4]),作为一种新型人工水通道。荧光实验和模拟表明,PAH[4]s 可以通过横向扩散在脂质膜中形成簇,从而为通过水线网络的快速和选择性水渗透提供协同的跨膜路径。定量运输研究表明,PAH[4]s 每分子每秒可运输 >109 个水分子,与水通道蛋白水通道相当。这些通道的性能超过当前海水淡化膜的上限约 104 倍,如水/NaCl渗透率-选择性权衡曲线所示。PAH[4] 通过协同水线形成的高水/溶质渗透选择性的独特特性可以为分离、能源生产和屏障应用中的渗透膜材料带来另一种设计范式。
更新日期:2019-12-17
down
wechat
bug