当前位置: X-MOL 学术Acta Biomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
ROS and GSH-responsive S-nitrosoglutathione functionalized polymeric nanoparticles to overcome multidrug resistance in cancer.
Acta Biomaterialia ( IF 9.4 ) Pub Date : 2019-12-14 , DOI: 10.1016/j.actbio.2019.12.016
Wen Wu 1 , Min Chen 1 , Tingrong Luo 1 , Ying Fan 1 , Jinqiang Zhang 1 , Yan Zhang 1 , Qianyu Zhang 1 , Anne Sapin-Minet 2 , Caroline Gaucher 2 , Xuefeng Xia 1
Affiliation  

Multidrug resistance of cancer cells is one of the major obstacle for chemotherapeutic efficiency. Nitric oxide (NO) has raised the potential to overcome multidrug resistance (MDR) with low side effects. Herein, we report a reactive oxygen species (ROS) and glutathione (GSH) responsive nanoparticle for the delivery of NO prodrug such as S-nitrosoglutathione (GSNO), which was chemically conjugated to an amphiphilic block copolymer. The GSNO functionalized nanoparticles show high NO loading capacity, good stability and sustained NO release with specific GSH activated NO-releasing kinetics. Such GSNO functionalized nanoparticles delivered doxorubicin (DOX) in a ROS triggered manner and increased the intracellular accumulation of DOX. However, in normal healthy cells, showing physiological concentrations of ROS, these nanoparticles presented good biocompatibility. The present work indicated that these multifunctional nanoparticles can serve as effective co-delivery platforms of NO and DOX to selectively kill chemo-resistant cancer cells through increasing chemo-sensitivity. STATEMENT OF SIGNIFICANCE: In this work, we constructed nitric oxide donor (S-nitrosoglutathione, GSNO) functionalized amphiphilic copolymer (PEG-PPS-GSNO) to deliver doxorubicin (DOX). The developed PEG-PPS-GSNO@DOX nanoparticles presented high NO capacity, ROS triggered DOX release and GSH triggered NO release. Thus NO reversed the chemo-resistance in HepG2/ADR cells increasing intrcellular accumulation of DOX. Furthermore, these PEG-PPS-GSNO@DOX nanoparticles exhibited biocompatibility to healthy cells and toxicity to cancer cells, due to elevated ROS.

中文翻译:

ROS和GSH响应性S-亚硝基谷胱甘肽功能化了聚合物纳米颗粒,以克服癌症中的多药耐药性。

癌细胞的多药耐药性是化疗效率的主要障碍之一。一氧化氮(NO)提高了克服多药耐药性(MDR)且具有较低副作用的潜力。在本文中,我们报告了活性氧(ROS)和谷胱甘肽(GSH)响应性纳米颗粒,用于递送NO前体药物,例如S-亚硝基谷胱甘肽(GSNO),其化学偶联到两亲嵌段共聚物上。GSNO官能化的纳米颗粒具有高的NO负载能力,良好的稳定性和持续的NO释放,并具有特定的GSH活化的NO释放动力学。此类GSNO功能化的纳米颗粒以ROS触发的方式递送阿霉素(DOX),并增加了DOX的细胞内积累。但是,在正常的健康细胞中,显示出ROS的生理浓度,这些纳米颗粒具有良好的生物相容性。目前的工作表明,这些多功能纳米粒子可以作为NO和DOX的有效共同传递平台,通过增加化学敏感性来选择性杀死化学耐药的癌细胞。意义声明:在这项工作中,我们构建了一氧化氮供体(S-亚硝基谷胱甘肽,GSNO)官能化的两亲共聚物(PEG-PPS-GSNO),以递送阿霉素(DOX)。已开发的PEG-PPS-GSNO @ DOX纳米粒子具有较高的NO容量,ROS触发了DOX释放,而GSH触发了NO释放。因此,NO逆转了HepG2 / ADR细胞的化学耐药性,增加了DOX的细胞内积累。此外,由于ROS升高,这些PEG-PPS-GSNO @ DOX纳米颗粒表现出对健康细胞的生物相容性和对癌细胞的毒性。目前的工作表明,这些多功能纳米粒子可以作为NO和DOX的有效共同传递平台,通过增加化学敏感性选择性杀伤抗化学性癌细胞。意义声明:在这项工作中,我们构建了一氧化氮供体(S-亚硝基谷胱甘肽,GSNO)官能化的两亲共聚物(PEG-PPS-GSNO),以递送阿霉素(DOX)。已开发的PEG-PPS-GSNO @ DOX纳米粒子具有较高的NO容量,ROS触发了DOX释放,而GSH触发了NO释放。因此,NO逆转了HepG2 / ADR细胞的化学耐药性,增加了DOX的细胞内积累。此外,由于ROS升高,这些PEG-PPS-GSNO @ DOX纳米颗粒表现出对健康细胞的生物相容性和对癌细胞的毒性。目前的工作表明,这些多功能纳米粒子可以作为NO和DOX的有效共同传递平台,通过增加化学敏感性来选择性杀死化学耐药的癌细胞。意义声明:在这项工作中,我们构建了一氧化氮供体(S-亚硝基谷胱甘肽,GSNO)官能化的两亲共聚物(PEG-PPS-GSNO),以递送阿霉素(DOX)。已开发的PEG-PPS-GSNO @ DOX纳米粒子具有较高的NO容量,ROS触发了DOX释放,而GSH触发了NO释放。因此,NO逆转了HepG2 / ADR细胞的化学耐药性,增加了DOX的细胞内积累。此外,由于ROS升高,这些PEG-PPS-GSNO @ DOX纳米颗粒表现出对健康细胞的生物相容性和对癌细胞的毒性。
更新日期:2019-12-17
down
wechat
bug