当前位置: X-MOL 学术Innov. Food Sci. Emerg. Technol. › 论文详情
Extruded meat analogues based on yellow, heterotrophically cultivated Auxenochlorella protothecoides microalgae
Innovative Food Science & Emerging Technologies ( IF 4.477 ) Pub Date : 2019-12-16 , DOI: 10.1016/j.ifset.2019.102275
Martín P. Caporgno; Lukas Böcker; Christina Müssner; Eric Stirnemann; Iris Haberkorn; Horst Adelmann; Stephan Handschin; Erich J. Windhab; Alexander Mathys

Alternatives to animal proteins with similar texture, appearance and taste are demanded by an increasing group of consumers. Plant-based meat analogues produced by high moisture extrusion cooking can provide relevant solutions. Here, microalgae combined to soy concentrates were shown to create fibrillary textured extrudates. The incorporation of spray-dried microalgae biomass in up to 50% affected the formation of fibers, which could be balanced by reducing moisture levels. The elevated fat content of microalgae biomass led to lubrication effects, while probably undisrupted microalgae cells acted as passive fillers and limited the access of intracellular proteins. Both effects may have reduced texturing but increased tenderness in comparison to pure soy based extrudates. By using heterotrophically cultivated Auxenochlorella protothecoides with a light-yellow coloration, a consumer-adverse visual appearance could be omitted. Microalgae integration improved the extrudate's nutritional profile by incorporating vitamins B and E, where over 95% was retained in the final product.

Industrial relevance

The meat analogue industry strives to be more than an alternative for vegetarian and vegan customers. Large initial public offerings of relevant players underline the current economic and industrial interest. Besides animal wellbeing, meat analogues are praised mainly for their reduced ecological and environmental impact. Yet, most of the products on the market are based on environmentally questionable resources, such as soy. Hence, this study with focus on microalgae as a protein alternative to the ubiquitously applied soy protein concentrate is relevant to the evolving industry and research. In this manuscript, a fibrillary textured plant-based product using microalgae is shown without an adverse color.

更新日期:2019-12-17

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
科研绘图
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug