当前位置: X-MOL 学术Neural Netw. › 论文详情
Minimum variance-embedded deep kernel regularized least squares method for one-class classification and its applications to biomedical data
Neural Networks ( IF 5.785 ) Pub Date : 2019-12-12 , DOI: 10.1016/j.neunet.2019.12.001
Chandan Gautam; Pratik K. Mishra; Aruna Tiwari; Bharat Richhariya; Hari Mohan Pandey; Shuihua Wang; M. Tanveer

Deep kernel learning has been well explored for multi-class classification tasks; however, relatively less work is done for one-class classification (OCC). OCC needs samples from only one class to train the model. Most recently, kernel regularized least squares (KRL) method-based deep architecture is developed for the OCC task. This paper introduces a novel extension of this method by embedding minimum variance information within this architecture. This embedding improves the generalization capability of the classifier by reducing the intra-class variance. In contrast to traditional deep learning methods, this method can effectively work with small-size datasets. We conduct a comprehensive set of experiments on 18 benchmark datasets (13 biomedical and 5 other datasets) to demonstrate the performance of the proposed classifier. We compare the results with 16 state-of-the-art one-class classifiers. Further, we also test our method for 2 real-world biomedical datasets viz.; detection of Alzheimer’s disease from structural magnetic resonance imaging data and detection of breast cancer from histopathological images. Proposed method exhibits more than 5% F1 score compared to existing state-of-the-art methods for various biomedical benchmark datasets. This makes it viable for application in biomedical fields where relatively less amount of data is available.
更新日期:2019-12-13

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug