当前位置: X-MOL 学术Metall. Mater. Trans. B. › 论文详情
Kinetic Study on Thermal Decomposition Behavior of Hematite Ore Fines at High Temperature
Metallurgical and Materials Transactions B ( IF 1.952 ) Pub Date : 2019-12-12 , DOI: 10.1007/s11663-019-01747-1
Liyong Xing, Yingxia Qu, Chunsong Wang, Lei Shao, Zongshu Zou, Wenjun Song

The ironmaking processes that directly use iron ore fines as raw material are under development and receiving more and more attention. In a flash reduction process, both the thermal decomposition reaction and the reduction reaction of ore fines are extremely fast and cause loss of oxygen from iron oxides. However, it is difficult to distinguish between the thermal decomposition and reduction during the conversion from hematite to magnetite. In this work, the thermal decomposition behavior of hematite ore fines with different particle sizes is investigated by using a thermogravimetric analyzer (TGA). The kinetic parameters are calculated based on the Coats–Redfern method and then verified by the Satava–Sestak method. The F2 model is identified as the most probable mechanism function under the present experimental conditions. The average values of activation energy and the pre-exponential factor are 1256 kJ mol−1 and 1.94 × 1041 s−1, respectively. The internal morphology of the fine hematite particle with partial decomposition is observed to further investigate the reaction mechanism. Moreover, the relative contribution of the two kinds of chemical reactions (thermal decomposition and gaseous reduction) to the overall conversion process from hematite to magnetite is investigated by kinetic calculations based on the obtained reaction rate equations.
更新日期:2019-12-13

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug