当前位置: X-MOL 学术Biophys. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Auditory Mechanics of the Outer Ear of the Bush-Cricket: A Numerical Approach
Biophysical Journal ( IF 3.2 ) Pub Date : 2020-01-01 , DOI: 10.1016/j.bpj.2019.11.3394
Emine Celiker 1 , Thorin Jonsson 2 , Fernando Montealegre-Z 1
Affiliation  

Bush crickets have tympanal ears located in the forelegs. Their ears are elaborate, as they have outer-, middle-, and inner-ear components. The outer ear comprises an air-filled tube derived from the respiratory trachea, the acoustic trachea (AT), which transfers sound from the mesothoracic acoustic spiracle to the internal side of the ear drums in the legs. A key feature of the AT is its capacity to reduce the velocity of sound propagation and alter the acoustic driving forces of the tympanum (the ear drum), producing differences in sound pressure and time between the left and right sides, therefore aiding the directional hearing of the animal. It has been demonstrated experimentally that the tracheal sound transmission generates a gain of ∼15 dB and a propagation velocity of 255 ms-1, an approximately 25% reduction from free-field propagation. However, the mechanism responsible for this change in sound pressure level and velocity remains elusive. In this study, we investigate the mechanical processes behind the sound pressure gain in the AT by numerically modeling the tracheal acoustic behavior using the finite-element method and real three-dimensional geometries of the tracheae of the bush cricket Copiphora gorgonensis. Taking into account the thermoviscous acoustic-shell interaction on the propagation of sound, we analyze the effects of the horn-shaped domain, material properties of the tracheal wall, and the thermal processes on the change in sound pressure level in the AT. Through the numerical results obtained, it is discerned that the tracheal geometry is the main factor contributing to the observed pressure gain.

中文翻译:

布什蟋蟀外耳的听觉力学:数值方法

布什蟋蟀有位于前腿的鼓膜耳朵。它们的耳朵很精致,因为它们有外耳、中耳和内耳组件。外耳包括一根来自呼吸气管的充气管,即声学气管 (AT),它将声音从中胸腔声学气孔传送到腿部耳鼓的内侧。AT 的一个关键特性是它能够降低声音传播速度并改变鼓膜(耳鼓)的声学驱动力,从而在左右两侧之间产生声压和时间差异,从而帮助定向听力的动物。实验证明,气管声音传输产生 ~15 dB 的增益和 255 ms-1 的传播速度,比自由场传播降低了大约 25%。然而,导致这种声压级和速度变化的机制仍然难以捉摸。在这项研究中,我们通过使用有限元方法和灌木蟋蟀 Copiphora gorgonensis 气管的真实三维几何形状对气管声学行为进行数值模拟,研究了 AT 声压增益背后的机械过程。考虑到热粘性声-壳相互作用对声音传播的影响,我们分析了喇叭形域、气管壁的材料特性以及热过程对 AT 声压级变化的影响。通过获得的数值结果,可以看出气管几何形状是导致观察到的压力增益的主要因素。导致这种声压级和速度变化的机制仍然难以捉摸。在这项研究中,我们通过使用有限元方法和灌木蟋蟀 Copiphora gorgonensis 气管的真实三维几何形状对气管声学行为进行数值模拟,研究了 AT 声压增益背后的机械过程。考虑到热粘性声-壳相互作用对声音传播的影响,我们分析了喇叭形域、气管壁的材料特性以及热过程对 AT 声压级变化的影响。通过获得的数值结果,可以看出气管几何形状是导致观察到的压力增益的主要因素。导致这种声压级和速度变化的机制仍然难以捉摸。在这项研究中,我们通过使用有限元方法和灌木蟋蟀 Copiphora gorgonensis 气管的真实三维几何形状对气管声学行为进行数值模拟,研究了 AT 声压增益背后的机械过程。考虑到热粘性声-壳相互作用对声音传播的影响,我们分析了喇叭形域、气管壁的材料特性以及热过程对 AT 声压级变化的影响。通过获得的数值结果,可以看出气管几何形状是导致观察到的压力增益的主要因素。我们通过使用有限元方法和灌木蟋蟀 Copiphora gorgonensis 气管的真实三维几何形状对气管声学行为进行数值模拟,研究了 AT 声压增益背后的机械过程。考虑到热粘性声-壳相互作用对声音传播的影响,我们分析了喇叭形域、气管壁的材料特性以及热过程对 AT 声压级变化的影响。通过获得的数值结果,可以看出气管几何形状是导致观察到的压力增益的主要因素。我们通过使用有限元方法和灌木蟋蟀 Copiphora gorgonensis 气管的真实三维几何形状对气管声学行为进行数值模拟,研究了 AT 声压增益背后的机械过程。考虑到热粘性声-壳相互作用对声音传播的影响,我们分析了喇叭形域、气管壁的材料特性以及热过程对 AT 声压级变化的影响。通过获得的数值结果,可以看出气管几何形状是导致观察到的压力增益的主要因素。
更新日期:2020-01-01
down
wechat
bug