当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrafast Active Tuning of the Berreman Mode
ACS Photonics ( IF 6.5 ) Pub Date : 2019-12-27 , DOI: 10.1021/acsphotonics.9b01578
Adam D. Dunkelberger 1 , Daniel C. Ratchford 1 , Andrea B. Grafton 2 , Vanessa M. Breslin 2 , Elizabeth S. Ryland 2 , D. Scott Katzer 1 , Kenan P. Fears 1 , R. Joseph Weiblen 3 , Igor Vurgaftman 1 , Alexander J. Giles 1 , Chase T. Ellis 1 , Joseph G. Tischler 1 , Joshua D. Caldwell 1, 4 , Jeffrey C. Owrutsky 1
Affiliation  

The Berreman effect, by which thin films of polar dielectric materials exhibit strong, narrow resonances near their longitudinal optic (LO) phonon frequency, results in strong material interactions with infrared radiation and offers tremendous potential for infrared nanophotonics. We report the first implementation of the LO-phonon-plasmon-coupling (LOPC) effect to actively tune the Berreman mode of a semiconductor thin film. Using time-resolved ultraviolet pump, infrared probe reflectance spectroscopy, we excite free carriers in a sub-infrared-wavelength film of GaN and observe substantial shifts of the Berreman mode as a new, simple version of LOPC-based polariton tuning. We demonstrate resonance shifts (Δω) comparable to the resonance width (δω), realizing a respectable tuning figure of merit Δω/δω ≈ 0.7, and show that the shift can be modulated on a sub-nanosecond time scale. These results provide substantial promise for future ultrafast, wavelength-tunable infrared photonic devices and novel experimental designs for understanding phonon–polariton free-carrier interactions.

中文翻译:

Berreman模式的超快速主动调音

Berreman效应使极性电介质材料的薄膜在其纵向光学(LO)声子频率附近表现出强而窄的共振,从而导致材料与红外辐射发生强烈相互作用,并为红外纳米光子学提供了巨大潜力。我们报告了LO-声子-等离子体激元耦合(LOPC)效应的首次实现,以主动调整半导体薄膜的Berreman模式。使用时间分辨紫外泵,红外探针反射光谱法,我们激发了GaN的亚红外波长膜中的自由载流子,并观察到基于基于LOPC的极化子调谐的新的简单版本,Berreman模式的实质性变化。我们展示了可与共振宽度(δω)相媲美的共振位移(Δω),实现了优异的品质因数Δω/δω≈0.7,并显示可以在亚纳秒级的时间范围内调整偏移。这些结果为未来超快,波长可调的红外光子设备和理解声子-极化子自由载流子相互作用的新颖实验设计提供了广阔的前景。
更新日期:2019-12-27
down
wechat
bug