当前位置: X-MOL 学术ACS Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrical Sensing of Phosphonates by Functional Coupling of Phosphonate Binding Protein PhnD to Solid-State Nanopores.
ACS Sensors ( IF 8.9 ) Pub Date : 2019-12-19 , DOI: 10.1021/acssensors.9b02097
Max Bernhard 1 , Mathias Diefenbach 2 , Markus Biesalski 2 , Bodo Laube 1
Affiliation  

Combining the stability of solid-state nanopores with the unique sensing properties of biological components in a miniaturized electrical hybrid nanopore device is a challenging approach to advance the sensitivity and selectivity of small-molecule detection in healthcare and environment analytics. Here, we demonstrate a simple method to design an electrical hybrid nanosensor comprising a bacterial binding protein tethered to a solid-state nanopore allowing high-affinity detection of phosphonates. The diverse family of bacterial substrate-binding proteins (SBPs) binds specifically and efficiently to various substances and has been implicated as an ideal biorecognition element for analyte detection in the design of hybrid bionanosensors. Here, we demonstrate that the coupling of the purified phosphonate binding protein PhnD via primary amines to the reactive NHS groups of P(DMAA-co-NMAS) polymers inside a single track-etched nanopore in poly(ethylene terephthalate) (PET) foils results in ligand-specific and concentration-dependent changes in the nanopore current. Application of the phosphonate 2-aminoethylphosphonate (2AEP) or ethylphosphonate (EP) induces a large conformational rearrangement in PnhD around the hinge in a venus flytrap mechanism resulting in a concentration depended on increase of the single pore current with binding affinities of 27 and 373 nM, respectively. Thus, the specificity and stability of this simple hybrid sensor concept combine the advantages of both, the diversity of ligand-specific substrate-binding proteins and solid-state nanopores encouraging further options to produce robust devices amenable to medical or environmental high-throughput-based applications in nanotechnology.

中文翻译:

通过膦酸酯结合蛋白PhnD与固态纳米孔的功能偶联,对膦酸酯进行电感应。

将固态纳米孔的稳定性与生物电混合纳米孔装置中生物成分的独特感测特性相结合是提高医疗保健和环境分析中小分子检测的灵敏度和选择性的一项具有挑战性的方法。在这里,我们演示了一种简单的方法来设计一个电杂交纳米传感器,该传感器包括一个细菌结合蛋白,该细菌结合蛋白被束缚在固态纳米孔上,从而可以高亲和力地检测膦酸酯。细菌底物结合蛋白(SBPs)的多样化家族特异性地和有效地结合到各种物质上,并已被认为是杂交生物传感器设计中用于分析物检测的理想生物识别元件。这里,我们证明了通过伯胺将纯化的膦酸酯结合蛋白PhnD偶联到聚对苯二甲酸乙二酯(PET)箔的单个轨迹蚀刻纳米孔内的P(DMAA-co-NMAS)聚合物的反应性NHS基团上导致了配体特定和浓度依赖性的纳米孔电流变化。膦酸2-氨基乙基膦酸酯(2AEP)或乙基膦酸酯(EP)的应用在金星捕蝇器机制的铰链周围引起PnhD的构象重排,导致浓度取决于单孔电流的增加,结合亲和力为27和373 nM , 分别。因此,这种简单的混合传感器概念的特异性和稳定性结合了两者的优点,
更新日期:2019-12-20
down
wechat
bug