当前位置: X-MOL 学术Polym. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Silane‐Modified Graphene Oxide as a Compatibilizer and Reinforcing Nanoparticle for Immiscible PP/PA Blends
Polymer Engineering and Science ( IF 3.2 ) Pub Date : 2019-11-08 , DOI: 10.1002/pen.25271
Adi Kol 1 , Samuel Kenig 1 , Naum Naveh 1
Affiliation  

Graphene oxide (GO) and aminosilane (AS)‐modified GO (GOAS) have been studied as possible compatibilizers for immiscible polyblends. Ideally, for localization of nanoparticles (NPs) at the interface, the thermodynamics of the constituents and mixing dynamics have to be tailored and controlled, respectively. Accordingly, a variety of oxidation levels (10%–40%) of GOs were prepared using Hummer's method and further modified by AS. Experimental results indicated that the GO goes through thermal reduction (above 200°C) during blending and reduced GO (rGO) is produced. The GOAS moderated the reduction reaction and stabilized the GO. The thermodynamic wetting coefficient of PP (polypropylene)/PA (polyamide)/rGOAS system was shown to drive the rGOAS from the PP phase to the blend's interface during time‐controlled blending. The localization of the rGOAS at the interface resulted in significant enhancement of mechanical properties using only 2–3 wt% of rGOAS. Over 100% enhancement in strength, 40% enhancement in modulus, and 30% in toughness were shown, compared with neat PP/PA. Reduced GOAS and its location at the interface resulted in a third glass transition temperature (Tg), in addition to the PP and PA respective Tgs. Rheological percolation at 2–3 wt% rGOAS (20%) supports the localization of rGOAS at the interface. Storage moduli increase with interfacial tension, in accordance to the rheological models. POLYM. ENG. SCI., 60:180–191, 2020. © 2019 Society of Plastics Engineers

中文翻译:

硅烷改性的氧化石墨烯作为增容剂和增强纳米颗粒,可与不混溶的PP / PA共混物

已经研究了氧化石墨烯(GO)和氨基硅烷(AS)改性的GO(GOAS)作为不混溶的多元共混物的可能增容剂。理想地,为了将纳米颗粒(NP)定位在界面上,必须分别调整和控制组分的热力学和混合动力学。因此,使用悍马方法制备了GOs的各种氧化水平(10%–40%),并通过AS进行了进一步修饰。实验结果表明,GO在掺混过程中经历了热还原(高于200°C),并产生了还原的GO(rGO)。GOAS缓和了还原反应并稳定了GO。结果表明,PP(聚丙烯)/ PA(聚酰胺)/ rGOAS系统的热力学润湿系数在时间控制的共混过程中将rGOAS从PP相驱动到共混物的界面。仅使用2–3 wt%的rGOAS,rGOAS在界面处的定位显着提高了机械性能。与纯PP / PA相比,强度提高了100%以上,模量提高了40%,韧性提高了30%。除PP和PA各自的Tgs外,降低的GOAS及其在界面处的位置还导致了第三种玻璃化转变温度(Tg)。rGOAS(20%)占2–3 wt%时的流变渗透支持rGOAS在界面处的定位。根据流变模型,储能模量随界面张力而增加。POLYM。ENG。SCI。,60:180–191,2020.©2019塑料工程师协会 与纯PP / PA相比,显示出30%的韧性。除PP和PA各自的Tgs外,降低的GOAS及其在界面处的位置还导致了第三种玻璃化转变温度(Tg)。rGOAS(20%)占2–3 wt%时的流变渗透支持rGOAS在界面处的定位。根据流变模型,储能模量随界面张力而增加。POLYM。ENG。SCI。,60:180–191,2020.©2019塑料工程师协会 与纯PP / PA相比,显示出30%的韧性。除PP和PA各自的Tgs外,降低的GOAS及其在界面处的位置还导致了第三种玻璃化转变温度(Tg)。rGOAS(20%)占2–3 wt%时的流变渗透支持rGOAS在界面处的定位。根据流变模型,储能模量随界面张力而增加。POLYM。ENG。SCI。,60:180–191,2020.©2019塑料工程师协会 ENG。SCI。,60:180–191,2020.©2019塑料工程师协会 ENG。SCI。,60:180–191,2020.©2019塑料工程师协会
更新日期:2019-11-08
down
wechat
bug