当前位置: X-MOL 学术Polym. Adv. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A feasible strategy to constructing hybrid conductive networks in PLA‐based composites modified by CNT‐d‐RGO particles and PEG for mechanical and electrical properties
Polymers for Advanced Technologies ( IF 3.1 ) Pub Date : 2019-11-14 , DOI: 10.1002/pat.4806
Shikui Jia 1, 2 , Demei Yu 1 , Yan Zhu 2 , Xiaolong Su 1 , Zhong Wang 2 , Ligui Chen 2
Affiliation  

Carbon nanotubes (CNTs) and reduced graphene oxide (RGO) were successfully assembled by chemical reaction to obtain CNT‐d‐RGO particles. Then, a home‐made dynamic impregnating device was used to prepare hybrid CNT‐d‐RGO/polyethylene glycol (PEG). Next, the different modifiers, including CNTs, GO, CNT‐d‐RGO, PEG, and CNT‐d‐RGO/PEG, were, respectively, added into poly‐(lactic acid) (PLA) matrix via melt‐compounding. The dispersed morphology for these different modifiers within the PLA matrix was confirmed by SEM and TEM observations. Especially, compared with the identical weight ratio of CNT‐d‐RGO, the hybrid CNT‐d‐RGO/PEG within the PLA matrix exhibited an excellent exfoliated and interconnected networks morphology. Moreover, compared with pure PLA, not only the crystallinity of all PLA‐based composites notably improved, but half‐crystallization time was also shortened. Furthermore, despite the addition of different modifiers, the crystal form of PLA‐based composites remained unchanged. Noticeably, compared with those of pure PLA, the tensile stress, strain, and modulus of PLA composite added with CNT‐d‐RGO/PEG increased by 29.4%, 4.1%, and 56.1%, respectively, and the V‐notch impact strength slightly improved. In addition, compared with pure PLA, volume resistivity of the PLA composite added with 1 wt% CNT‐d‐RGO/PEG decreased by 93.1%, and its volume conductivity increased by five orders of magnitude.

中文翻译:

在由CNT-d-RGO颗粒和PEG改性的PLA基复合材料中构建机械和电学性能的混合导电网络的可行策略

通过化学反应成功地组装了碳纳米管(CNTs)和还原氧化石墨烯(RGO),以获得CNT-d-RGO颗粒。然后,使用自制的动态浸渍设备来制备CNT-d-RGO /聚乙二醇(PEG)杂化物。接下来,通过熔融复合将不同的改性剂(包括CNT,GO,CNT-d-RGO,PEG和CNT-d-RGO / PEG)分别添加到聚乳酸(PLA)基质中。通过SEM和TEM观察证实了PLA基质中这些不同改性剂的分散形态。特别是,与相同重量比的CNT-d-RGO相比,PLA基质内的杂化CNT-d-RGO / PEG表现出优异的剥离和互连网络形态。此外,与纯PLA相比,不仅所有PLA基复合材料的结晶度都得到了显着改善,但是半结晶时间也缩短了。此外,尽管添加了不同的改性剂,但PLA基复合材料的晶形保持不变。值得注意的是,与纯PLA相比,添加CNT-d-RGO / PEG的PLA复合材料的拉伸应力,应变和模量分别增加了29.4%,4.1%和56.1%,并且V型缺口冲击强度略有改善。此外,与纯PLA相比,添加1 wt%CNT-d-RGO / PEG的PLA复合材料的体积电阻率降低了93.1%,其体积电导率提高了五个数量级。添加CNT-d-RGO / PEG的PLA复合材料的模量和模量分别增加了29.4%,4.1%和56.1%,并且V型缺口的冲击强度略有提高。此外,与纯PLA相比,添加1 wt%CNT-d-RGO / PEG的PLA复合材料的体积电阻率降低了93.1%,其体积电导率提高了五个数量级。添加CNT-d-RGO / PEG的PLA复合材料的模量和模量分别增加了29.4%,4.1%和56.1%,并且V型缺口的冲击强度略有提高。此外,与纯PLA相比,添加1 wt%CNT-d-RGO / PEG的PLA复合材料的体积电阻率降低了93.1%,其体积电导率提高了五个数量级。
更新日期:2019-11-14
down
wechat
bug