当前位置: X-MOL 学术J. Biomed. Mater. Res. Part B Appl. Biomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Composition control in biphasic silicate microspheres on stimulating new bone regeneration and repair of osteoporotic femoral bone defect.
Journal of Biomedical Materials Research Part B: Applied Biomaterials ( IF 3.4 ) Pub Date : 2019-04-29 , DOI: 10.1002/jbm.b.34396
Edem P Ghamor-Amegavi 1, 2 , Xianyan Yang 3 , Jiandi Qiu 4 , Lijun Xie 1, 2 , Zhijun Pan 1, 2 , Juncheng Wang 4 , Xiangfeng Zhang 1, 2 , Xiurong Ke 4 , Tengfei Zhao 1, 2 , Lei Zhang 4 , Zhongru Gou 3
Affiliation  

Application of bioactive materials as synthetic bone graft substitutes in regenerative medicine has seen great evolution over the past decades in treating challengeable bone defects. However, balancing the preparation conditions and biological performances of inorganic biomaterials remain a great challenge, especially when there is lack of biomaterial design on how to control component distribution and how pathological bone responds to the biomaterial stimulations and osteogenesis. Here, our objective is to develop yolk‐shell Ca‐silicate microspheres and to investigate the potential biological performances to overcome the limitations in repair of osteoporotic bone defects. The introduction of β‐calcium silicate (CaSiO3) or mesoporous bioactive glass (MBG) into self‐curing β‐dicalcium silicate (Ca2SiO4) cement shell to form spherical granules (CaSiO3@Ca2SiO4, MBG@Ca2SiO4) was to retain the physicochemical property and/or microstructure of each component for optimizing bioactive ion release that could maximize osteostimulation in osteoporosis. We report a scalable shape‐controlled mild fabrication protocol to yield the yolk‐shell granules, endowing to different phases in yolk layer and interconnected macropore networks in the closely packed granule scaffolds. This unique heterostructure preparation is governed by coaxially aligned bilayer nozzle, inorganic powders and biocompatible binders. Extensive in vitro and in vivo evaluation showed that the CaSiO3@Ca2SiO4 and MBG@Ca2SiO4 granules exhibited many superior properties such as controllable ion release, improved biodegradation and enhanced osteogenic capability in comparison with the pure Ca2SiO4@Ca2SiO4, thereby opening new mild‐condition approach in fabricating osteogenesis‐tailored silicate biomaterials for bone regenerative medicine, especially for efficient reconstruction of challenging pathological bone defects.

中文翻译:

双相硅酸盐微球中的成分控制刺激新骨再生和修复骨质疏松性股骨缺损。

在过去的几十年里,生物活性材料作为合成骨移植替代品在再生医学中的应用在治疗棘手的骨缺损方面取得了巨大的进步。然而,平衡无机生物材料的制备条件和生物学性能仍然是一个巨大的挑战,特别是当缺乏关于如何控制成分分布以及病理骨如何响应生物材料刺激和成骨的生物材料设计时。在这里,我们的目标是开发蛋黄-壳钙硅酸盐微球并研究其潜在的生物学性能,以克服修复骨质疏松性骨缺损的局限性。将β-硅酸钙(CaSiO 3)或介孔生物活性玻璃(MBG)引入自固化β-硅酸二钙(Ca 2SiO 4 ) 水泥壳形成球形颗粒(CaSiO 3 @Ca 2 SiO 4,MBG@Ca 2 SiO 4)是为了保留每个组分的物理化学性质和/或微观结构,以优化生物活性离子的释放,从而最大限度地刺激骨质疏松症。我们报告了一种可扩展的形状控制的温和制造协议,以产生蛋黄-壳颗粒,赋予蛋黄层中的不同相和紧密堆积的颗粒支架中相互连接的大孔网络。这种独特的异质结构制备由同轴排列的双层喷嘴、无机粉末和生物相容性粘合剂控制。广泛的体外和体内评估表明 CaSiO 3@Ca 2的SiO 4和MBG @的Ca 2的SiO 4个颗粒与纯钙比较表现出许多优越的性质,例如可控的离子释放,改进的生物降解和生骨增强能力2的SiO 4 @Ca 2的SiO 4,从而打开新温和条件制造用于骨再生医学的成骨定制硅酸盐生物材料的方法,特别是用于有效重建具有挑战性的病理性骨缺损。
更新日期:2019-04-29
down
wechat
bug