当前位置: X-MOL 学术Energy Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Defect‐Rich Graphene Architecture Induced by Nitrogen and Phosphorus Dual Doping for High‐Performance Supercapacitors
Energy Technology ( IF 3.6 ) Pub Date : 2019-09-30 , DOI: 10.1002/ente.201900685
Chaonan Wang 1 , Shengyun Luo 1 , Yinye Yang 1 , Dasen Ren 1 , Xu Yu 2
Affiliation  

Heteroatom modification of graphene is a promising strategy to improve the electrochemical performance of supercapacitors. Herein, the heteroatom (N and P) dual‐doped reduced graphene architecture (NP‐rGA) is constructed via the combination of ice‐template and thermal activation approaches. The interconnected morphology and surface chemical state of NP‐rGA is confirmed by various microscopic and spectroscopic analyses. The formation of N‐ and P‐containing functional groups acts as primary electroactive sites for the fast accommodation/relaxation of protons or electrons. Furthermore, NP‐rGA exhibits a significant improvement in pseudocapacitive behavior in contrast to rGA, such as high specific capacitance (307.8 F g−1), excellent rate capability (85.7%), and cyclic stability of 100.1% of its initial cycle. These excellent electrochemical evidences can be assigned to the synergistic effect of hierarchical structure and uniform heteroatom (N and P) doping.

中文翻译:

氮和磷双重掺杂诱发高性能超级电容器的富缺陷石墨烯体系结构

石墨烯的杂原子修饰是提高超级电容器电化学性能的一种有前途的策略。在本文中,杂原子(N和P)双掺杂还原石墨烯结构(NP-rGA)是通过冰模板和热活化方法的组合而构建的。各种微观和光谱分析证实了NP‐rGA的相互连接的形态和表面化学状态。含N和P的官能团的形成是质子或电子快速适应/松弛的主要电活性位点。此外,与rGA相比,NP‐rGA在伪电容性能方面具有显着改善,例如高比电容(307.8 F g -1),出色的速率处理能力(85.7%),以及其初始循环的100.1%的循环稳定性。这些优异的电化学证据可归因于分层结构和均匀杂原子(N和P)掺杂的协同效应。
更新日期:2019-09-30
down
wechat
bug