当前位置: X-MOL 学术J. Biomed. Mater. Res. Part A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrospinning of tyrosine-based oligopeptides: Self-assembly or forced assembly?
Journal of Biomedical Materials Research Part A ( IF 3.9 ) Pub Date : 2019-12-19 , DOI: 10.1002/jbm.a.36861
Yasaman Hamedani 1, 2 , Prathyushakrishna Macha 1, 2 , Elvira L Evangelista 1, 2 , Vamshikrishna R Sammeta 3 , Vijaya Chalivendra 4 , Sivappa Rasapalli 3 , Milana C Vasudev 1
Affiliation  

Short oligomeric peptides typically do not exhibit the entanglements required for the formation of nanofibers via electrospinning. In this study, the synthesis of nanofibers composed of tyrosine‐based dipeptides via electrospinning, has been demonstrated. The morphology, mechanical stiffness, biocompatibility, and stability under physiological conditions of such biodegradable nanofibers were characterized. The electrospun peptide nanofibers have diameters less than 100 nm and high mechanical stiffness. Raman and infrared signatures of the peptide nanofibers indicate that the electrostatic forces and solvents used in the electrospinning process lead to secondary structures different from self‐assembled nanostructures composed of similar peptides. Crosslinking of the dipeptide nanofibers using 1,6‐diisohexanecyanate (HMDI) improved the physiological stability, and initial biocompatibility testing with human and rat neural cell lines indicate no cytotoxicity. Such electrospun peptides open up a realm of biomaterials design with specific biochemical compositions for potential biomedical applications such as tissue repair, drug delivery, and coatings for implants.

中文翻译:

酪氨酸基寡肽的静电纺丝:自组装还是强制组装?

短寡聚肽通常不表现出通过静电纺丝形成纳米纤维所需的缠结。在这项研究中,已经证明了通过静电纺丝合成由酪氨酸基二肽组成的纳米纤维。表征了这种可生物降解纳米纤维在生理条件下的形态、机械刚度、生物相容性和稳定性。电纺肽纳米纤维具有小于 100 nm 的直径和高机械刚度。肽纳米纤维的拉曼和红外特征表明,静电纺丝过程中使用的静电力和溶剂导致二级结构不同于由相似肽组成的自组装纳米结构。二肽纳米纤维的交联使用 1, 6-二异己烷氰酸酯 (HMDI) 改善了生理稳定性,对人和大鼠神经细胞系的初步生物相容性测试表明没有细胞毒性。这种电纺肽开辟了具有特定生化成分的生物材料设计领域,用于潜在的生物医学应用,如组织修复、药物输送和植入物涂层。
更新日期:2019-12-19
down
wechat
bug