当前位置: X-MOL 学术Mater. Sci. Semicond. Proc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
All-inorganic, hole-transporting-layer-free, carbon-based CsPbIBr2 planar perovskite solar cells by a two-step temperature-control annealing process
Materials Science in Semiconductor Processing ( IF 4.2 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.mssp.2019.104870
Cheng Wang , Junsen Zhang , Jipeng Duan , Li Gong , Jie Wu , Liangxiang Jiang , Conghua Zhou , Haipeng Xie , Yongli Gao , Haiping He , Jianguo Lu , Zhishan Fang , Bojing Lu

Abstract In this paper, all-inorganic CsPbIBr2 thin films were annealed by a two-step temperature-control process. All-inorganic, hole-transporting-layer-free, carbon-based planar perovskite solar cells (PSCs) with these CsPbIBr2 thin films (FTO/c-TiO2/CsPbIBr2/C) were fabricated. The effect of different first-step annealing temperatures during the two-step temperature-control process (50 °C/280 °C, 80 °C/280 °C, 100 °C/280 °C, 150 °C/280 °C, 180 °C/280 °C) on the photovoltaic conversion efficiency (PCE) of PSCs was investigated for the first time. When the first-step annealing temperature was 150 °C and the second-step annealing temperature was 280 °C, the highest efficiency of 8.31% was obtained. Without encapsulation, the solar cell could retain 97% of the initial PCE, when it was stored at 80 °C and zero humidity for 8 days. For comparison, solar cells with CsPbIBr2 films annealed by a one-step temperature-control process were fabricated. The highest PCE was 4.98%. From this, we could see that there is an increase of 66.9% in PCE, through using a two-step temperature-control annealing process. And also, in order to investigate why the PSCs by a two-step temperature-control annealing process has a higher PCE, all kinds of measurements were done for the first time. According to the results of the measurements, the perovskite film annealed by a two-step temperature-control process has a bigger crystal size, fewer grain boundaries, stronger PL and UV–vis absorption intensities, longer lifetime of minority carriers, less energy loss for hole transporting.

中文翻译:

采用两步温控退火工艺的全无机、无空穴传输层、碳基 CsPbIBr2 平面钙钛矿太阳能电池

摘要 在本文中,全无机 CsPbIBr2 薄膜通过两步温控工艺进行退火。制造了具有这些 CsPbIBr2 薄膜(FTO/c-TiO2/CsPbIBr2/C)的全无机、无空穴传输层、碳基平面钙钛矿太阳能电池(PSC)。两步控温过程(50°C/280°C、80°C/280°C、100°C/280°C、150°C/280°C)中不同的第一步退火温度的影响, 180 °C/280 °C) 对 PSC 的光伏转换效率 (PCE) 的影响是首次被研究。当第一步退火温度为150°C,第二步退火温度为280°C时,获得了8.31%的最高效率。在没有封装的情况下,当太阳能电池在 80°C 和零湿度下储存 8 天时,它可以保留 97% 的初始 PCE。为了比较,制造了通过一步温度控制工艺退火的具有 CsPbIBr2 薄膜的太阳能电池。最高的 PCE 为 4.98%。从中我们可以看出,通过使用两步温控退火工艺,PCE 增加了 66.9%。而且,为了研究为什么通过两步温控退火工艺制成的 PSC 具有更高的 PCE,首次进行了各种测量。根据测量结果,通过两步温控工艺退火的钙钛矿薄膜具有更大的晶体尺寸,更少的晶界,更强的PL和UV-vis吸收强度,更长的少数载流子寿命,更少的能量损失空穴传输。我们可以看到,通过使用两步温控退火工艺,PCE 增加了 66.9%。而且,为了研究为什么通过两步温控退火工艺制成的 PSC 具有更高的 PCE,首次进行了各种测量。根据测量结果,通过两步温控工艺退火的钙钛矿薄膜具有更大的晶体尺寸,更少的晶界,更强的PL和UV-vis吸收强度,更长的少数载流子寿命,更少的能量损失空穴传输。我们可以看到,通过使用两步温控退火工艺,PCE 增加了 66.9%。而且,为了研究为什么通过两步温控退火工艺制成的 PSC 具有更高的 PCE,首次进行了各种测量。根据测量结果,通过两步温控工艺退火的钙钛矿薄膜具有更大的晶体尺寸,更少的晶界,更强的PL和UV-vis吸收强度,更长的少数载流子寿命,更少的能量损失空穴传输。各种测量都是第一次做。根据测量结果,通过两步温控工艺退火的钙钛矿薄膜具有更大的晶体尺寸,更少的晶界,更强的PL和UV-vis吸收强度,更长的少数载流子寿命,更少的能量损失空穴传输。各种测量都是第一次做。根据测量结果,通过两步温控工艺退火的钙钛矿薄膜具有更大的晶体尺寸,更少的晶界,更强的PL和UV-vis吸收强度,更长的少数载流子寿命,更少的能量损失空穴传输。
更新日期:2020-03-01
down
wechat
bug