当前位置: X-MOL 学术Int. J. Refract. Met. Hard Mater. › 论文详情
Study on process optimization of WC-Co50 cermet composite coating by laser cladding
International Journal of Refractory Metals & Hard Materials ( IF 2.794 ) Pub Date : 2019-10-17 , DOI: 10.1016/j.ijrmhm.2019.105133
Pengfei Fan, Guan Zhang

In order to optimize the process of tungsten carbide (WC)-reinforced Co50 cermet composite coating by laser cladding, Co-based coatings with 40 wt% WC were deposited on the surface of cone bit 15MnNi4Mo steel by 4 kW fiber laser. A single-factor experiment was designed to study the variation of the geometrical size, dilution rate and hardness of cladding layers with the change of various factors. Then, an orthogonal experiment was designed to study the optimal parameters for the laser cladding process by taking the hardness and dilution rate of the coatings as comprehensive indexes. Based on the results of the above experiments, the mathematical model of the relationship between the geometrical size of the cladding layers with the process parameters was established by regression analysis. In addition, the three-dimensional structure and microstructure of the coatings were analyzed by optical microscopy (OM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The results revealed that with the increase of the laser power, the width of the cladding layer, the depth of the molten pool and the dilution rate gradually increased, while the coating height remained basically unchanged. Additionally, with the increase of the scanning speed, the coating height and the molten pool depth were relatively greatly reduced, while the coating width decreased little. Furthermore, with the increase of the powder feeding rate, the width of the cladding layer, the molten pool depth and the dilution rate gradually decreased, while the coating height gradually increased. The optimal process parameters are as follows: laser power of 2.4 kW, scanning speed of 7 mm/s, and powder feeding rate of 0.5 g/s. The mathematical model established by regression analysis fitted the width of the cladding layer best, and the minimum relative error was only 0.023%. The microstructure showed that metallurgical bonding was achieved between the coatings and substrates. Also, the coatings were compact and free of defects such as cracks and pores.
更新日期:2019-12-11

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug