当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bandgap engineering in two-dimensional halide perovskite Cs3Sb2I9 nanocrystals under pressure.
Nanoscale ( IF 6.7 ) Pub Date : 2020-01-08 , DOI: 10.1039/c9nr09533k
Ting Geng 1 , Zhiwei Ma , Yaping Chen , Ye Cao , Pengfei Lv , Nan Li , Guanjun Xiao
Affiliation  

Halide perovskites have attracted great attention owing to their outstanding performance in optoelectronic applications and solar cells. Recently, two-dimensional (2D) Cs3Sb2I9 nanocrystals (NCs) have attracted sustained interest due to their potentially useful photovoltaic behavior. However, their practical application is impeded by the large bandgap. In this study, the bandgap of 2D Cs3Sb2I9 NCs is successfully narrowed from 2.05 eV to 1.36 eV by means of a high pressure with a measurable rate of 33.7%. Optical changes of 2D Cs3Sb2I9 NCs originate from Sb-I bond contraction and I-Sb-I bond angle changes within the [SbI6]3- octahedra, which determines the overlap of orbitals. Angle dispersive synchrotron X-ray diffraction spectra and Raman spectra of Cs3Sb2I9 NCs indicate that the structural amorphization gradually begins at about 14.0 GPa and the changes are reversible once pressure is completely released. The band gap is slightly smaller after decompression than that under the initial ambient conditions, resulting from the incomplete recrystallization process. First-principles calculations further elucidate that variations in band gaps are mainly governed by the orbital interactions associated with the distortion of the Sb-I octahedral network upon compression. The research enhances the fundamental understanding of 2D Cs3Sb2I9 NCs and is expected to greatly advance the research progress of perovskites in band gap interception at high pressures. Meanwhile, this study demonstrates that pressure processing can be used as a robust strategy to improve materials-by-design in applications.

中文翻译:

压力下二维卤化物钙钛矿Cs3Sb2I9纳米晶体的带隙工程。

卤化物钙钛矿因其在光电应用和太阳能电池中的卓越性能而备受关注。近来,二维(2D)Cs3Sb2I9纳米晶体(NC)由于其潜在有用的光伏行为而引起了持续的关注。然而,它们的实际应用受到大的带隙的阻碍。在这项研究中,二维Cs3Sb2I9 NC的带隙通过高压以可测量的33.7%的比率成功地从2.05 eV缩小到1.36 eV。2D Cs3Sb2I9 NC的光学变化源自[SbI6] 3-八面体中Sb-1键的收缩和I-Sb-1键角的变化,这决定了轨道的重叠。Cs3Sb2I9 NCs的角色散同步加速器X射线衍射光谱和拉曼光谱表明,结构非晶化在14左右逐渐开始。0 GPa,一旦压力完全释放,变化是可逆的。减压后的带隙比初始环境条件下的带隙略小,这是由于不完全的重结晶过程所致。第一性原理的计算进一步阐明了带隙的变化主要受与压缩时Sb-1八面体网络的畸变相关的轨道相互作用的支配。该研究增强了对2D Cs3Sb2I9 NC的基本理解,并有望极大地促进钙钛矿在高压下带隙拦截方面的研究进展。同时,这项研究表明,压力处理可以用作一种稳健的策略,以改善应用中的设计材料。减压后的带隙比初始环境条件下的带隙略小,这是由于不完全的重结晶过程所致。第一性原理的计算进一步阐明了带隙的变化主要受与压缩时Sb-1八面体网络的畸变相关的轨道相互作用的支配。该研究增强了对2D Cs3Sb2I9 NC的基本理解,并有望极大地促进钙钛矿在高压下带隙拦截方面的研究进展。同时,这项研究表明,压力处理可以作为一种稳健的策略来改进应用中的设计材料。减压后的带隙比初始环境条件下的带隙略小,这是由于不完全的重结晶过程所致。第一性原理的计算进一步阐明了带隙的变化主要受与压缩时Sb-1八面体网络的畸变相关的轨道相互作用的支配。该研究增强了对2D Cs3Sb2I9 NC的基本理解,并有望极大地促进钙钛矿在高压下带隙拦截方面的研究进展。同时,这项研究表明,压力处理可以用作一种稳健的策略,以改善应用中的设计材料。第一性原理的计算进一步阐明了带隙的变化主要受与压缩时Sb-1八面体网络的畸变相关的轨道相互作用的支配。该研究增强了对2D Cs3Sb2I9 NC的基本理解,并有望极大地促进钙钛矿在高压下带隙拦截方面的研究进展。同时,这项研究表明,压力处理可以作为一种稳健的策略来改进应用中的设计材料。第一性原理的计算进一步阐明了带隙的变化主要受与压缩时Sb-1八面体网络的畸变相关的轨道相互作用的支配。该研究增强了对2D Cs3Sb2I9 NC的基本理解,并有望极大地促进钙钛矿在高压下带隙拦截方面的研究进展。同时,这项研究表明,压力处理可以作为一种稳健的策略来改进应用中的设计材料。该研究增强了对2D Cs3Sb2I9 NC的基本理解,并有望极大地促进钙钛矿在高压下带隙拦截方面的研究进展。同时,这项研究表明,压力处理可以用作一种稳健的策略,以改善应用中的设计材料。该研究增强了对2D Cs3Sb2I9 NC的基本理解,并有望极大地促进钙钛矿在高压下带隙拦截方面的研究进展。同时,这项研究表明,压力处理可以作为一种稳健的策略来改进应用中的设计材料。
更新日期:2020-01-08
down
wechat
bug