当前位置: X-MOL 学术Electrocatalysis › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Iron Oxide Nanoflower–Based Screen Print Electrode for Enhancement Removal of Organic Dye Using Electrochemical Approach
Electrocatalysis ( IF 2.7 ) Pub Date : 2019-08-20 , DOI: 10.1007/s12678-019-00554-1
Dalibor M. Stanković , Miloš Ognjanović , Ana Espinosa , Maria del Puerto Morales , Lotfi Bessais , Karim Zehani , Bratislav Antić , Biljana Dojcinović

In this study, for the first time, we developed a novel platform for the removal of the synthetic organic dye Reactive Blue 52 based on a screen-printed electrode (SPCE). Additionally, SPCE was supported on a nanocomposite obtained by decoration of reduced graphene oxide (RGO) with iron oxide nanoflowers (IONFs), labeled as IONF@RGO/SPCE. IONFs were synthesized by polyol-mediated reduction of iron (III) chloride and characterized. Nanocomposite was prepared using a microwave hydrothermal-assisted procedure. The high stability (service life) of the IONF@RGO/SPCE electrode was measured, and it remained almost unchanged over time, achieving the same removal efficiency after 50 cycles of usage. Electrical impedance spectroscopy (EIS) tests indicated the synergetic effect of the used IONF@RGO by reducing resistivity of the system and improving its catalytic activity, which was confirmed with cyclic voltammetry (CV tests) where the great increase of the electrochemically active surface area sites was obvious. The results clearly indicate that with this approach, the optimum removal time of the selected pollutant was only 30 min, at a working potential of 3 V and with potassium chloride as the supporting electrolyte, with color removal efficiency of 99%, while chemical oxygen demand (COD) of more than 40%, total organic carbon (TOC) decrease of around 20%, and biochemical oxygen demand (BOD5), i.e., biodegradability (BOD5/COD ratio) significantly increased were measured after only 1 h of the treatment. Overall, the electrochemical removal procedure proposed in this study could be a reliable novel system, opening a new approach to using screen print–based electrodes.

Open image in new windowGraphical Abstract
Graphical Abstract

.



中文翻译:

氧化铁纳米花基丝网印刷电极,用于通过电化学方法增强去除有机染料的能力

在这项研究中,我们首次开发了一种基于丝网印刷电极(SPCE)去除合成有机染料活性蓝52的新型平台。另外,SPCE被负载在通过用氧化铁纳米花(IONF)装饰还原性氧化石墨烯(RGO)而制得的纳米复合材料上,标记为IONF @ RGO / SPCE。IONFs是通过多元醇介导的氯化铁(III)还原反应合成的,并进行了表征。使用微波水热辅助方法制备了纳米复合材料。测量了IONF @ RGO / SPCE电极的高稳定性(使用寿命),并且随着时间的推移几乎保持不变,在使用了50个循环后达到了相同的去除效率。电阻抗光谱法(EIS)测试表明,通过降低系统的电阻率并提高其催化活性,可以使用所用的IONF @ RGO产生协同作用,这在循环伏安法(CV测试)中得到了证实,其中电化学活性表面积的显着增加很明显。结果清楚地表明,采用这种方法,在3 V的工作电势下,以氯化钾作为辅助电解质,所选污染物的最佳去除时间仅为30分钟,除色效率为99%,而对化学需氧量的要求最高。 (COD)超过40%,总有机碳(TOC)减少约20%,以及生化需氧量(BOD)循环伏安法(CV测试)证实了这一点,其中电化学活性表面积的增加非常明显。结果清楚地表明,采用这种方法,在3 V的工作电势下,以氯化钾作为辅助电解质,所选污染物的最佳去除时间仅为30分钟,除色效率为99%,而对化学需氧量的要求最高。 (COD)超过40%,总有机碳(TOC)减少约20%,以及生化需氧量(BOD)循环伏安法(CV测试)证实了这一点,其中电化学活性表面积的增加非常明显。结果清楚地表明,采用这种方法,在3 V的工作电势下,以氯化钾作为辅助电解质,所选污染物的最佳去除时间仅为30分钟,除色效率为99%,而对化学需氧量的要求最高。 (COD)超过40%,总有机碳(TOC)减少约20%,以及生化需氧量(BOD)5),即在仅处理1小时后,测量到的生物降解能力(BOD 5 / COD比)显着增加。总的来说,这项研究中提出的电化学去除程序可能是一个可靠的新型系统,为使用基于丝网印刷的电极开辟了一种新方法。

在新窗口中打开图像图形概要
图形概要

更新日期:2019-08-20
down
wechat
bug