当前位置: X-MOL 学术Int. J. Mater. Form. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predicting consolidation-induced wrinkles and their effects on composites structural performance
International Journal of Material Forming ( IF 2.6 ) Pub Date : 2019-11-16 , DOI: 10.1007/s12289-019-01514-2
Balazs Varkonyi , Jonathan P.-H. Belnoue , James Kratz , Stephen R. Hallett

The majority of high-performance composite parts are nowadays designed using advanced numerical simulations that are able to accurately predict a part’s strength and deformation, providing that the internal ply architecture and exact fibre orientation are known with sufficient accuracy. However, most parts have some deviation of the fibre orientation from the ‘as-designed’ geometry, leading to the simulation overestimating the component’s strength. Up until recently, the advancement of the process simulation tools has not been sufficient to allow knowledge of this fibre deviation before any part has been manufactured, thus leading to overly conservative designs and costly experimental optimisation of the manufacturing process to reduce fibre path defects. This results in additional cost, waste of material and increased fuel consumption (due to the unnecessary weight of the components). This paper shows how state-of-the-art composite manufacturing simulations of the autoclave consolidation process can predict and help to mitigate against out-of-plane wrinkle formation in components made from toughened UD prepregs and thus raise confidence in failure analyses predictions. The industry relevant case of a stepped laminate is used as an example. Model predictions for the internal ply geometries are quantitatively compared to micrograph images of real samples. It is then shown how the input of the simulated ply architecture helps improving the accuracy of the failure simulations.



中文翻译:

预测固结引起的皱纹及其对复合材料结构性能的影响

如今,大多数高性能复合材料零件都是使用高级数值模拟设计的,这些模拟能够准确预测零件的强度和变形,前提是已知内部层板结构和精确的纤维取向并具有足够的精度。但是,大多数零件的纤维取向与“设计的”几何形状有些偏差,导致模拟过高估计了组件的强度。直到最近,工艺仿真工具的发展还不足以在制造任何零件之前就了解这种光纤的偏差,从而导致设计过于保守,制造过程的实验优化成本很高,以减少光纤路径缺陷。这导致额外的费用,浪费材料和增加燃料消耗(由于组件不必要的重量)。本文展示了高压釜固结过程的最新复合制造模拟如何预测并帮助缓解由增韧的UD预浸料制成的组件的面外皱纹的形成,从而提高对失效分析预测的信心。以与工业相关的阶梯状层压板为例。将内部层几何形状的模型预测与真实样品的显微图像定量比较。然后显示了模拟层结构的输入如何帮助提高故障模拟的准确性。本文展示了高压釜固结过程的最新复合制造模拟如何预测并帮助缓解由增韧的UD预浸料制成的组件的面外皱纹的形成,从而提高对失效分析预测的信心。以与工业相关的阶梯状层压板为例。将内部层几何形状的模型预测与真实样品的显微图像定量比较。然后显示了模拟层结构的输入如何帮助提高故障模拟的准确性。本文展示了高压釜固结过程的最新复合材料制造模拟如何预测并帮助减轻由增韧的UD预浸料制成的部件的面外皱纹的形成,从而提高对失效分析预测的信心。以与工业相关的阶梯状层压板为例。将内部层几何形状的模型预测与真实样品的显微图像定量比较。然后显示了模拟层结构的输入如何帮助提高故障模拟的准确性。将内部层几何形状的模型预测与真实样品的显微图像定量比较。然后显示了模拟层结构的输入如何帮助提高故障模拟的准确性。将内部层几何形状的模型预测与真实样品的显微图像定量比较。然后显示了模拟层结构的输入如何帮助提高故障模拟的准确性。

更新日期:2019-11-16
down
wechat
bug