当前位置: X-MOL 学术Plasma Chem. Plasma Proc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interaction of CH4 with Electronically Excited O2: Ab Initio Potential Energy Surfaces and Reaction Kinetics
Plasma Chemistry and Plasma Processing ( IF 2.6 ) Pub Date : 2019-07-31 , DOI: 10.1007/s11090-019-10008-7
Alexey V. Pelevkin , Alexander S. Sharipov

Multireference quantum chemical research with the aid of complete active space self-consistent field approach was performed to study the elementary reactions of CH4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text {CH}}_4}$$\end{document} with O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {O}}_2$$\end{document} in a1Δg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a^1\varDelta _g}$$\end{document}, b1Σg+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b^1\varSigma _g^+}$$\end{document}, c1Σu-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c^1\varSigma _u^-}$$\end{document}, and A′3Δu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A^{\prime 3} \varDelta _u}$$\end{document} electronically excited states highly relevant for plasma-assisted combustion and for plasma-chemical fuel reforming. The thermodynamically and kinetically favorable reaction pathways and likely intersystem crossings for the first step of the methane oxidation have been found out. The key energy values were refined based upon the extended multiconfiguration quasi-degenerate 2nd-order perturbation theory. It has been exhibited that the reaction of O2(a1Δg)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text {O}}_2(a^1\varDelta _g)}$$\end{document} and O2(A′3Δu)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text {O}}_2(A^{\prime 3} \varDelta _u)}$$\end{document} with CH4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text {CH}}_4}$$\end{document} proceeds through the abstraction of hydrogen with fairly low energy barriers that led to the formation of the HO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {HO}_2$$\end{document} molecule in 2A″\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${^2A^{\prime \prime }}$$\end{document} and 2A′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${^2A^{\prime }}$$\end{document} electronic states, respectively. These results were compared with the findings of previous theoretical investigations. The oxygen molecule in singlet sigma b state was evinced to be nonreactive with regard to the methane. However, for c1Σu-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c^1\varSigma _u^-}$$\end{document} state, the reactive interaction was nevertheless found possible due to the significant probability of the nonadiabatic transitions. Appropriate thermal rate constants for revealed channels have been calculated employing variational transition-state theory and capture approximation. Corresponding three-parameter Arrhenius expressions for the broad temperature range (T=300\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T=300$$\end{document}–3000 K) were reported.

中文翻译:

CH4 与电子激发 O2 的相互作用:从头算势能面和反应动力学

和 A′3Δu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{ \oddsidemargin}{-69pt} \begin{document}$${A^{\prime 3} \varDelta _u}$$\end{document} 电子激发态与等离子体辅助燃烧和等离子体化学燃料重整高度相关. 已经发现了甲烷氧化第一步的热力学和动力学有利的反应途径和可能的系统间交叉。基于扩展的多配置准简并二阶微扰理论对关键能量值进行了细化。\usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${^2A^{\prime }}$$\end{document} 电子状态,分别。这些结果与以前的理论研究结果进行了比较。单线态 sigma b 状态的氧分子被证明对甲烷是非反应性的。然而,对于 c1Σu-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength {\oddsidemargin}{-69pt} \begin{document}$${c^1\varSigma _u^-}$$\end{document} 状态,但由于非绝热跃迁的可能性很大,因此发现反应性相互作用是可能的. 已使用变分过渡态理论和捕获近似计算了显露通道的适当热速率常数。对应宽温度范围的三参数 Arrhenius 表达式 (T=300\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage {mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T=300$$\end{document}–3000 K) 被报告。
更新日期:2019-07-31
down
wechat
bug