当前位置: X-MOL 学术Front. Chem. Sci. Eng. › 论文详情
A new approach for scheduling of multipurpose batch processes with unlimited intermediate storage policy
Frontiers of Chemical Science and Engineering ( IF 2.809 ) Pub Date : 2019-11-07 , DOI: 10.1007/s11705-019-1858-4
Nikolaos Rakovitis, Nan Zhang, Jie Li, Liping Zhang

The increasing demand of goods, the high competitiveness in the global marketplace as well as the need to minimize the ecological footprint lead multipurpose batch process industries to seek ways to maximize their productivity with a simultaneous reduction of raw materials and utility consumption and efficient use of processing units. Optimal scheduling of their processes can lead facilities towards this direction. Although a great number of mathematical models have been developed for such scheduling, they may still lead to large model sizes and computational time. In this work, we develop two novel mathematical models using the unit-specific event-based modelling approach in which consumption and production tasks related to the same states are allowed to take place at the same event points. The computational results demonstrate that both proposed mathematical models reduce the number of event points required. The proposed unit-specific event-based model is the most efficient since it both requires a smaller number of event points and significantly less computational time in most cases especially for those examples which are computationally expensive from existing models.
更新日期:2019-12-11

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug