当前位置: X-MOL 学术Small Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Energy‐Efficient, Wood‐Derived Structural Material Enabled by Pore Structure Engineering towards Building Efficiency
Small Methods ( IF 10.7 ) Pub Date : 2019-12-11 , DOI: 10.1002/smtd.201900747
Shuaiming He 1 , Chaoji Chen 1 , Tian Li 1 , Jianwei Song 1 , Xinpeng Zhao 2 , Yudi Kuang 1 , Yang Liu 1 , Yong Pei 3 , Emily Hitz 1 , Weiqing Kong 1 , Wentao Gan 1 , Bao Yang 3 , Ronggui Yang 1 , Liangbing Hu 1
Affiliation  

The development of high‐performance structural materials for high‐rise building applications is critical in achieving the energy conservation goal mandated by the Department of Energy (DOE). However, there is usually a trade‐off between the mechanical strength and thermal insulation properties for these materials. Here, the optimization is demonstrated of natural wood to simultaneously improve the mechanical properties and thermal insulation for energy efficient high‐rise wood buildings. The improved wood material (strong white wood) features a complete delignification followed by a partial densification process (pore structure control), which enables substantially enhanced mechanical properties (≈3.4× in tensile strength, ≈3.2× in toughness) and reduced thermal conductivity (≈44% decrease in the transverse direction). The complete delignification process removes all lignin and partial hemicellulose from the cell walls of the wood structure, leading to an all‐cellulose microstructure with numerous aligned cellulose nanofibers. The partial densification optimizes the porosity of the delignified cellulose scaffold while enhancing the effectiveness of hydrogen bonding among aligned cellulose nanofibers. The simultaneously improved mechanical and thermal insulation properties of the wood material render it highly desirable for a wide range of modern engineering applications, especially as an energy‐efficient, strong, lightweight, environmentally‐benign, scalable, and low‐cost building material.

中文翻译:

通过孔结构工程实现建筑节能的节能木材衍生结构材料

对于高层建筑应用而言,高性能结构材料的开发对于实现能源部(DOE)规定的节能目标至关重要。但是,通常在这些材料的机械强度和隔热性能之间进行权衡。在此,我们展示了天然木材的优化效果,可同时提高节能型高层木结构建筑的机械性能和隔热性能。改良的木质材料(强白木)具有完全脱木素的特性,然后进行部分致密化(控制孔结构),从而可以显着提高机械性能(拉伸强度约为3.4倍,韧性约为3.2倍)并降低了导热性(横向减少约44%)。完整的脱木素过程从木质结构的细胞壁中去除了所有的木质素和部分半纤维素,从而形成了具有大量排列的纤维素纳米纤维的全纤维素微结构。部分致密化优化了脱木质纤维素支架的孔隙率,同时增强了排列的纤维素纳米纤维之间氢键结合的有效性。木材材料同时提高的机械和隔热性能使其非常适合各种现代工程应用,尤其是作为节能,坚固,轻便,对环境有益,可扩展且低成本的建筑材料。导致具有许多对齐的纤维素纳米纤维的全纤维素微结构。部分致密化优化了脱木质纤维素支架的孔隙率,同时增强了排列的纤维素纳米纤维之间氢键结合的有效性。木材材料同时提高的机械和隔热性能使其非常适合各种现代工程应用,尤其是作为节能,坚固,轻便,对环境有益,可扩展且低成本的建筑材料。导致具有许多对齐的纤维素纳米纤维的全纤维素微结构。部分致密化优化了脱木质纤维素支架的孔隙率,同时增强了排列的纤维素纳米纤维之间氢键结合的有效性。木材材料同时提高的机械和隔热性能使其非常适合各种现代工程应用,尤其是作为节能,坚固,轻便,对环境有益,可扩展且低成本的建筑材料。
更新日期:2019-12-11
down
wechat
bug