当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting
Progress in Materials Science ( IF 33.6 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.pmatsci.2019.100632
Š. Kment , K. Sivula , A. Naldoni , S.P. Sarmah , H. Kmentová , M. Kulkarni , Y. Rambabu , P. Schmuki , R. Zbořil

Abstract The need to satisfy the growing global population’s enormous energy demands is a major challenge for modern societies. Photoelectrochemical (PEC) water splitting (WS) is seen as a leading strategy for producing an extremely promising renewable store of energy – hydrogen (H2). However, PEC-WS is a complex process involving several sequential physicochemical reaction steps including light absorption, separation of photoexcited charges, and surface redox reactions. At present, FeO-based semiconductors represent a unique class of materials known to exhibit very high performance in all these processes. This review summarizes and critically discusses the major components of PEC-WS systems incorporating FeO-based light-harvesting systems, and outlines the progress that has been made, particularly over the last decade. Emphasis is placed on materials used as photoanodes (including hematite and nonhematite iron oxides, spinel iron ferrites, and pseudobrookite iron titanates) as well as materials used as cocatalysts and passivation layers – notably iron hydroxyoxides and their composites. We discuss strategies for overcoming the main limitations of the aforementioned materials via nanostructuring, elemental doping, surface decoration, and the formation of advanced hybrid nanoarchitectures. Finally, we use this knowledge to present a critical overview of the field and the future prospects of Fe-O semiconductors in PEC-WS applications.

中文翻译:

用于光电化学水分解的 Fe3O 基纳米结构和纳米杂化物

摘要 满足日益增长的全球人口巨大的能源需求是现代社会面临的一项重大挑战。光电化学 (PEC) 水分解 (WS) 被视为生产极其有前途的可再生能源 - 氢 (H2) 的主要策略。然而,PEC-WS 是一个复杂的过程,涉及几个连续的物理化学反应步骤,包括光吸收、光激发电荷的分离和表面氧化还原反应。目前,FeO 基半导体代表了一类独特的材料,已知在所有这些过程中都表现出非常高的性能。这篇综述总结并批判性地讨论了 PEC-WS 系统的主要组成部分,包括基于 Fe3O 的光收集系统,并概述了已经取得的进展,特别是在过去十年中。重点放在用作光阳极的材料(包括赤铁矿和非赤铁矿氧化铁、尖晶石铁氧体和假板钛矿铁钛酸盐)以及用作助催化剂和钝化层的材料——特别是羟基氧化铁及其复合材料。我们讨论了通过纳米结构、元素掺杂、表面装饰和高级混合纳米结构的形成来克服上述材料的主要局限性的策略。最后,我们利用这些知识对 PEC-WS 应用中 Fe-O 半导体的领域和未来前景进行了重要的概述。和假板钛酸铁)以及用作助催化剂和钝化层的材料——特别是羟基氧化铁及其复合材料。我们讨论了通过纳米结构、元素掺杂、表面装饰和高级混合纳米结构的形成来克服上述材料的主要局限性的策略。最后,我们利用这些知识对 PEC-WS 应用中 Fe-O 半导体的领域和未来前景进行了重要的概述。和假板钛酸铁)以及用作助催化剂和钝化层的材料——特别是羟基氧化铁及其复合材料。我们讨论了通过纳米结构、元素掺杂、表面装饰和高级混合纳米结构的形成来克服上述材料的主要局限性的策略。最后,我们利用这些知识对 PEC-WS 应用中 Fe-O 半导体的领域和未来前景进行了重要的概述。
更新日期:2020-05-01
down
wechat
bug