当前位置: X-MOL 学术Metall. Mater. Trans. B. › 论文详情
Three-Dimensional Distributions of Large-Sized Inclusions in the Surface Layer of IF Steel Slabs
Metallurgical and Materials Transactions B ( IF 1.952 ) Pub Date : 2019-12-09 , DOI: 10.1007/s11663-019-01751-5
Xiaoxuan Deng, Qiangqiang Wang, Chenxi Ji, Haibo Li, Xiaojing Shao, Baisong Liu, Guosen Zhu

The distribution of surface macro-inclusions is an important parameter that can directly influence the surface quality of IF steel sheets. In the present work, macro-inclusions > 100 μm within a 20-mm zone from the slab surface across the whole slab width were characterized by step machining methods, and the total analyzed area was 3,300,000 mm2. Three kinds of macro-inclusions were detected: bubbles (including single and aggregated), alumina associated with bubbles and refractory-related alumina. The three-dimensional distribution of surface macro-inclusions across the whole slab width was reconstructed, which showed macro-inclusions along the thickness direction almost concentrated 8 to 20 mm from the slab surface, corresponding to the center of the upper roll zone and stagnant zone below the submerged entry nozzle bottom according to the full-scale water mold model simulation. An inclusion stability model was established that indicated that increasing the flow velocity sharply decreased the stability degree at the solidification front because of the washing effect. The calculated results by this model agree with the fact that macro-inclusions were mainly concentrated in the slab center because of the low flow velocity at this location. The present work indicates that increasing the flow velocity at the solidification front as well as eliminating the stagnant zone is a potential way to improve the surface quality of IF steel slabs.
更新日期:2019-12-11

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug