当前位置: X-MOL 学术Chin. J. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simultaneous visible-light-induced hydrogen production enhancement and antibiotic wastewater degradation using MoS2@Zn Cd1-S: Solid-solution-assisted photocatalysis
Chinese Journal of Catalysis ( IF 15.7 ) Pub Date : 2020-01-01 , DOI: 10.1016/s1872-2067(19)63479-0
Zhidong Wei , Meiqi Xu , Junying Liu , Weiqi Guo , Zhi Jiang , Wenfeng Shangguan

Abstract In this study, a ZnxCd1-xS solid solution was successfully synthesized using a hydrothermal method. MoS2 serving as a co-catalyst for hydrogen evolution was also prepared through a one-pot hydrothermal method. The structures, morphology, chemical states, and optical properties were characterized using powder X-ray diffraction, scanning electron microscopy, high-angle annular dark field-scanning transmission electron microscopy, elemental mapping, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflection spectroscopy. Visible-light-driven photocatalytic experiments were conducted to simultaneously achieve hydrogen production and amoxicillin antibiotic wastewater degradation. The results indicated 8%MoS2/ZnxCd1-xS achieves the best photocatalytic performance. The ZnxCd1-xS samples illustrated a superior performance to that of CdS, which can be attributed to a thermodynamic improvement. Based on the results of PL and TRPL analyses, the enhancement of the hydrogen production mechanisms can be ascribed to the prolonged separation process of the photocarriers. Furthermore, the degradation results were analyzed using the HPLC method and the possible degradation pathways were determined through the HPLC-MS techniques.

中文翻译:

使用 MoS2@Zn Cd1-S 同时可见光诱导产氢增强和抗生素废水降解:固溶辅助光催化

摘要 本研究采用水热法成功合成了ZnxCd1-xS固溶体。还通过一锅水热法制备了作为析氢助催化剂的 MoS2。使用粉末 X 射线衍射、扫描电子显微镜、高角度环形暗场扫描透射电子显微镜、元素映射、X 射线光电子能谱和 UV-Vis 漫射来表征结构、形态、化学状态和光学性质。反射光谱。进行可见光驱动的光催化实验以同时实现制氢和阿莫西林抗生素废水降解。结果表明,8%MoS2/ZnxCd1-xS 的光催化性能最好。ZnxCd1-xS 样品表现出优于 CdS 的性能,这可以归因于热力学的改进。根据 PL 和 TRPL 分析的结果,产氢机制的增强可归因于光载流子分离过程的延长。此外,使用 HPLC 方法分析了降解结果,并通过 HPLC-MS 技术确定了可能的降解途径。
更新日期:2020-01-01
down
wechat
bug