当前位置: X-MOL 学术J. Trace Elem. Med. Bio. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lead-induced oxidative damage in rats/mice: A meta-analysis.
Journal of Trace Elements in Medicine and Biology ( IF 3.5 ) Pub Date : 2019-12-04 , DOI: 10.1016/j.jtemb.2019.126443
Yongsheng Fan 1 , Xue Zhao 1 , Jun Yu 1 , Jie Xie 1 , Cong Li 1 , Duanya Liu 1 , Caoli Tang 1 , Chunhong Wang 2
Affiliation  

BACKGROUND Lead (Pb) is ubiquitous in the environment and is an environmental genotoxic metal. Pb accumulation in the body could cause the oxidative stress. OBJECTIVE This meta-analysis aimed to perform a systematic evaluation of the extent of oxidative damage in rats/mice induced by lead. METHODS All relevant articles in English or Chinese were retrieved from Embase, PubMed, Web of Science, Medline, China National Knowledge Infrastructure, and Chinese Biological Medicine databases from their inception date until July 22, 2018. RESULTS A total of 108 eligible articles were included in this study. The indicators of oxidative stress included malondialdehyde (MDA), glutathione disulfide (GSSG), reactive oxygen species (ROS), hydrogen peroxide (H2O2), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced glutathione (GSH), superoxide dismutase (SOD), and glutathione-s-transferase (GST). The meta-analysis showed that lead significantly increased oxidants levels, such as MDA, GSSG, ROS, and H2O2 (P < 0.05), and significantly reduced the level of antioxidants, such as CAT, GPx, GR, GSH, SOD, and GST (P < 0.05). The intraperitoneal mode was more effective than water drinking mode in reducing the levels of CAT, GPx, GSH, and SOD (P < 0.05). Other factors that influenced the overall oxidative stress, including species of animals, type of tissues, and intervention dosage and time, were comprehensively evaluated. CONCLUSION The results of meta-analysis indicated that mice were more sensitive to lead than rats, and intraperitoneal mode was an effective intervention mean. High doses and long periods of lead treatment can cause serious oxidative damage. Moreover, testicular was more vulnerable to lead than other tissues. These results provided scientific evidence for preventing and treating lead toxicity.
更新日期:2019-12-04
down
wechat
bug