当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs.
Chemical Reviews ( IF 51.4 ) Pub Date : 2019-12-03 , DOI: 10.1021/acs.chemrev.9b00416
Jing Ren 1 , Yu Wang 2 , Yuan Yao 1 , Yang Wang 1 , Xiang Fei 3 , Ping Qi 1 , Shihui Lin 1 , David L Kaplan 2 , Markus J Buehler 4 , Shengjie Ling 1
Affiliation  

The extraordinary properties of biological materials often result from their sophisticated hierarchical structures. Through multilevel and cross-scale structural designs, biological materials offset the weakness of their individual building blocks and enhance performance at multiple length scales to match the multifunctional needs of organisms. One essential merit of hierarchical structure is that it can optimize the interfacial features of the "building blocks" at different length scales, from the molecular level to the macroscale. Understanding the roles of biological material interfaces (BMIs) on the determination of properties and functions of biological materials has become a growing interdisciplinary research area in recent years. A pivotal aim of these studies is to use BMIs as inspiration for developing bioinspired and biomimetic materials and devices with advanced structures and functions. Given these considerations, this review aims to comprehensively discuss the structure-property-function relationships of BMIs in nature. We particularly focus on the discussion of BMIs and their inspired materials from mechanical and optical perspectives because these two directions are the most well-investigated and closely related. The challenges and directions of design and fabrication of BMI-inspired mechanical and optical materials are also discussed. This review is expected to garner interest from advanced material communities as well as environmental, nanotechnology, food processing, and engineering fields.

中文翻译:

生物材料界面为机械和光学材料设计提供了灵感。

生物材料的非凡特性通常源于其复杂的层次结构。通过多层次和跨尺度的结构设计,生物材料可以弥补其各个组成部分的弱点,并在多个长度尺度上提高性能,从而满足生物的多功能需求。层次结构的一个基本优点是,它可以优化从分子水平到宏观水平的不同长度尺度的“构件”的界面特征。近年来,了解生物材料界面(BMI)在确定生物材料的特性和功能方面的作用已成为一个日益增长的跨学科研究领域。这些研究的关键目标是利用BMI作为开发具有先进结构和功能的仿生仿生材料和装置的灵感。考虑到这些考虑因素,本综述旨在全面讨论自然界中BMI的结构-属性-功能关系。我们特别关注从机械和光学角度对BMI及其启发材料的讨论,因为这两个方面的研究最为深入且密切相关。还讨论了受BMI启发的机械和光学材料的设计和制造所面临的挑战和方向。预期该评论将引起先进材料社区以及环境,纳米技术,食品加工和工程领域的兴趣。考虑到这些考虑因素,本综述旨在全面讨论自然界中BMI的结构-属性-功能关系。我们特别关注从机械和光学的角度对BMI及其受启发的材料进行讨论,因为这两个方面的研究最为深入且密切相关。还讨论了受BMI启发的机械和光学材料的设计和制造所面临的挑战和方向。预期该评论将引起先进材料社区以及环境,纳米技术,食品加工和工程领域的兴趣。考虑到这些考虑因素,本综述旨在全面讨论自然界中BMI的结构-属性-功能关系。我们特别关注从机械和光学的角度对BMI及其受启发的材料进行讨论,因为这两个方面的研究最为深入且密切相关。还讨论了受BMI启发的机械和光学材料的设计和制造所面临的挑战和方向。预期该评论将引起先进材料社区以及环境,纳米技术,食品加工和工程领域的兴趣。我们特别关注从机械和光学的角度对BMI及其受启发的材料进行讨论,因为这两个方面的研究最为深入且密切相关。还讨论了受BMI启发的机械和光学材料的设计和制造所面临的挑战和方向。预期该评论将引起先进材料社区以及环境,纳米技术,食品加工和工程领域的兴趣。我们特别关注从机械和光学的角度对BMI及其受启发的材料进行讨论,因为这两个方面的研究最为深入且密切相关。还讨论了受BMI启发的机械和光学材料的设计和制造所面临的挑战和方向。预期该评论将引起先进材料社区以及环境,纳米技术,食品加工和工程领域的兴趣。
更新日期:2019-12-03
down
wechat
bug