当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Integrated Plasmo-Photoelectronic Nanostructure Biosensor Detects an Infection Biomarker Accompanying Cell Death in Neutrophils.
Small ( IF 13.3 ) Pub Date : 2019-12-03 , DOI: 10.1002/smll.201905611
Younggeun Park 1, 2 , Byunghoon Ryu 1 , Qiufang Deng 3, 4 , Baihong Pan 3, 5 , Yujing Song 1 , Yuzi Tian 5, 6 , Hasan B Alam 3 , Yongqing Li 2, 3 , Xiaogan Liang 1, 2 , Katsuo Kurabayashi 1, 2
Affiliation  

Bacterial infections leading to sepsis are a major cause of deaths in the intensive care unit. Unfortunately, no effective methods are available to capture the early onset of infectious sepsis near the patient with both speed and sensitivity required for timely clinical treatment. To fill the gap, the authors develop a highly miniaturized (2.5 × 2.5 µm2 ) plasmo-photoelectronic nanostructure device that detected citrullinated histone H3 (CitH3), a biomarker released to the blood circulatory system by neutrophils. Rapidly detecting CitH3 with high sensitivity has the great potential to prevent infections from developing life-threatening septic shock. To this end, the author's device incorporates structurally engineered arrayed hemispherical gold nanoparticles that are functionalized with high-affinity antibodies. A nanoplasmonic resonance shift induces a photoconduction increase in a few-layer molybdenum disulfide (MoS2 ) channel, and it provides the sensor signal. The device achieves label-free detection of serum CitH3 with a 5-log dynamic range from 10-4 to 101 ng mL and a sample-to-answer time <20 min. Using this biosensor, the authors longitudinally measure the dynamic CitH3 profiles of individual living mice in a sepsis model at high resolution over 12 hours. The developed biosensor may be poised for future translation to personalized management of systemic bacterial infections.

中文翻译:

集成的等离子光电纳米结构生物传感器可检测中性粒细胞中伴随细胞死亡的感染生物标志物。

导致败血症的细菌感染是重症监护病房死亡的主要原因。不幸的是,没有有效的方法来捕获患者附近的感染性败血症的早期发作,并且需要及时临床治疗所需的速度和敏感性。为了填补这一空白,作者开发了一种高度小型化(2.5×2.5 µm2)的等离子体光电纳米结构设备,该设备可检测瓜氨酸化的组蛋白H3(CitH3),这是一种由中性粒细胞释放到血液循环系统中的生物标志物。以高灵敏度快速检测CitH3具有巨大的潜力,可以防止感染发展为威胁生命的败血性休克。为此,作者的设备结合了结构工程化的阵列半球形金纳米颗粒,这些纳米颗粒用高亲和力抗体进行了功能化。纳米等离子体共振位移在几层二硫化钼(MoS2)通道中引起光电导增加,并提供传感器信号。该设备实现了对血清CitH3的无标记检测,动态范围从10-4到101 ng mL的5对数,样品到答案的时间<20分钟。使用这种生物传感器,作者可以在12个小时内高分辨率测量脓毒症模型中单个活体小鼠的动态CitH3概况。开发的生物传感器可能准备用于将来转化为系统性细菌感染的个性化管理。使用这种生物传感器,作者可以在12个小时内高分辨率测量脓毒症模型中单个活体小鼠的动态CitH3概况。开发的生物传感器可能准备用于将来转化为系统性细菌感染的个性化管理。使用这种生物传感器,作者可以在12小时内高分辨率测量脓毒症模型中单个活体小鼠的动态CitH3概况。开发的生物传感器可能准备用于将来转化为系统性细菌感染的个性化管理。
更新日期:2020-01-09
down
wechat
bug