当前位置: X-MOL 学术J. Mater. Process. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of Laser Power on Geometry, Microstructure and Mechanical Properties of Printed Ti-6Al-4V Parts
Journal of Materials Processing Technology ( IF 6.7 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.jmatprotec.2019.116539
F. R. Kaschel , M. Celikin , D.P. Dowling

Abstract This study investigated the effect of laser power on the properties of Ti-6Al-4V alloy parts produced by additive manufacturing. The printing study was carried out using the laser beam powder bed fusion (PBF-LB) technique (Renishaw RenAM 500M). The laser power was altered in the range of 100–400 W, in order to evaluate the effects of changing the input energy received by the powder particles on the as-built parts. The impact of changing laser power was investigated based on printed part dimensions, porosity, morphology, micro/nanostructure, wear, hardness and tensile properties. It was determined that laser power has a direct influence on part dimensional accuracy, with larger dimensions compared with CAD design under the processing conditions used, obtained at higher powers i.e. 2 % at 250 W, while 4 % at 400 W. The border thickness for rounded edges was found to be ∼0.2 ± 0.06 mm greater than that obtained for straight edges, printed on the same quarter circle samples. A more homogeneous morphology, along with an improved surface finish, was obtained for parts printed using the higher laser powers. The microstructure of the high power alloy, was characterised by wider prior β grains with longer and finer α ' needles, along with superior as-built mechanical properties, when compared to parts produced using lower laser power (100 W). Additionally, shifts in the XRD peak position for parts printed at the lower and higher laser powers, indicate some reduction in the level of residual stress for parts produced at higher powers.

中文翻译:

激光功率对Ti-6Al-4V印刷零件几何、显微组织和机械性能的影响

摘要 本研究研究了激光功率对增材制造 Ti-6Al-4V 合金零件性能的影响。印刷研究是使用激光束粉末床融合 (PBF-LB) 技术 (Renishaw RenAM 500M) 进行的。激光功率在 100-400 W 的范围内改变,以评估改变粉末颗粒接收到的输入能量对竣工部件的影响。基于打印部件尺寸、孔隙率、形态、微/纳米结构、磨损、硬度和拉伸性能,研究了改变激光功率的影响。确定激光功率对零件尺寸精度有直接影响,在使用的加工条件下,与 CAD 设计相比,在更高的功率下获得更大的尺寸,即 250 W 时为 2%,而 400 W 时为 4%。发现圆边的边框厚度比直边的边框厚度大 ~0.2 ± 0.06 毫米,打印在相同的四分之一圆样品上。对于使用较高激光功率打印的零件,获得了更均匀的形态以及改进的表面光洁度。与使用较低激光功率 (100 W) 生产的零件相比,高功率合金的微观结构具有更宽的先前 β 晶粒和更长更细的 α' 针,以及优异的竣工机械性能。此外,在较低和较高激光功率下打印部件的 XRD 峰值位置的偏移表明,在较高功率下生产的部件的残余应力水平有所降低。印在同一个四分之一圆样品上。对于使用较高激光功率打印的零件,获得了更均匀的形态以及改进的表面光洁度。与使用较低激光功率 (100 W) 生产的零件相比,高功率合金的微观结构具有更宽的先前 β 晶粒和更长更细的 α' 针,以及优异的竣工机械性能。此外,在较低和较高激光功率下打印部件的 XRD 峰值位置的偏移表明,在较高功率下生产的部件的残余应力水平有所降低。印在同一个四分之一圆样品上。对于使用较高激光功率打印的零件,获得了更均匀的形态以及改进的表面光洁度。与使用较低激光功率 (100 W) 生产的零件相比,高功率合金的微观结构具有更宽的先前 β 晶粒和更长更细的 α' 针,以及优异的竣工机械性能。此外,在较低和较高激光功率下打印部件的 XRD 峰值位置的偏移表明,在较高功率下生产的部件的残余应力水平有所降低。与使用较低激光功率 (100 W) 生产的零件相比,它的特点是更宽的先前 β 晶粒和更长更细的 α' 针,以及优异的竣工机械性能。此外,在较低和较高激光功率下打印部件的 XRD 峰值位置的偏移表明,在较高功率下生产的部件的残余应力水平有所降低。与使用较低激光功率 (100 W) 生产的零件相比,它的特点是更宽的先前 β 晶粒和更长更细的 α' 针,以及优异的竣工机械性能。此外,在较低和较高激光功率下打印部件的 XRD 峰值位置的偏移表明,在较高功率下生产的部件的残余应力水平有所降低。
更新日期:2020-04-01
down
wechat
bug