当前位置: X-MOL 学术npj Quantum Inform. › 论文详情
Local-measurement-based quantum state tomography via neural networks
npj Quantum Information ( IF 8.270 ) Pub Date : 2019-11-29 , DOI: 10.1038/s41534-019-0222-3
Tao Xin, Sirui Lu, Ningping Cao, Galit Anikeeva, Dawei Lu, Jun Li, Guilu Long, Bei Zeng

Quantum state tomography is a daunting challenge of experimental quantum computing, even in moderate system size. One way to boost the efficiency of state tomography is via local measurements on reduced density matrices, but the reconstruction of the full state thereafter is hard. Here, we present a machine-learning method to recover the ground states of \(k\)-local Hamiltonians from just the local information, where a fully connected neural network is built to fulfill the task with up to seven qubits. In particular, we test the neural network model with a practical dataset, that in a 4-qubit nuclear magnetic resonance system our method yields global states via the 2-local information with high accuracy. Our work paves the way towards scalable state tomography in large quantum systems.
更新日期:2019-11-30

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug