当前位置: X-MOL 学术Plant Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Protein synthesis increases with photosynthesis via the stimulation of translation initiation
Plant Science ( IF 4.2 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.plantsci.2019.110352
Guillaume Tcherkez 1 , Adam Carroll 2 , Cyril Abadie 3 , Samuel Mainguet 4 , Marlène Davanture 5 , Michel Zivy 5
Affiliation  

Leaf protein synthesis is an essential process at the heart of plant nitrogen (N) homeostasis and turnover that preferentially takes place in the light, that is, when N and CO2 fixation occur. The carbon allocation to protein synthesis in illuminated leaves generally accounts for ca. 1 % of net photosynthesis. It is likely that protein synthesis activity varies with photosynthetic conditions (CO2/O2 atmosphere composition) since changes in photorespiration and carbon provision should in principle impact on amino acid supply as well as metabolic regulation via leaf sugar content. However, possible changes in protein synthesis and translation activity when gaseous conditions vary are virtually unknown. Here, we address this question using metabolomics, isotopic techniques, phosphoproteomics and polysome quantitation, under different photosynthetic conditions that were varied with atmospheric CO2 and O2 mole fraction, using illuminated Arabidopsis rosettes under controlled gas exchange conditions. We show that carbon allocation to proteins is within 1-2.5 % of net photosynthesis, increases with photosynthesis rate and is unrelated to total amino acid content. In addition, photosynthesis correlates to polysome abundance and phosphorylation of ribosomal proteins and translation initiation factors. Our results demonstrate that translation activity follows photosynthetic activity, showing the considerable impact of metabolism (carboxylation-oxygenation balance) on protein synthesis.

中文翻译:

通过刺激翻译起始,蛋白质合成随着光合作用增加

叶蛋白合成是植物氮 (N) 稳态和周转的核心必不可少的过程,该过程优先发生在光照下,即发生 N 和 CO2 固定时。被照亮的叶子中蛋白质合成的碳分配通常占约。净光合作用的 1%。蛋白质合成活性很可能随光合条件(CO2/O2 大气成分)而变化,因为光呼吸和碳供应的变化原则上应该影响氨基酸供应以及通过叶糖含量的代谢调节。然而,当气体条件变化时,蛋白质合成和翻译活性可能发生的变化实际上是未知的。在这里,我们使用代谢组学、同位素技术、磷酸蛋白质组学和多核糖体定量来解决这个问题,在随大气 CO2 和 O2 摩尔分数变化的不同光合条件下,在受控气体交换条件下使用照明的拟南芥玫瑰花结。我们表明,蛋白质的碳分配在净光合作用的 1-2.5% 范围内,随着光合作用速率的增加而增加,并且与总氨基酸含量无关。此外,光合作用与核糖体蛋白和翻译起始因子的多核糖体丰度和磷酸化相关。我们的结果表明翻译活动遵循光合作用活动,表明代谢(羧化-氧合平衡)对蛋白质合成的显着影响。我们表明,蛋白质的碳分配在净光合作用的 1-2.5% 范围内,随着光合作用速率的增加而增加,并且与总氨基酸含量无关。此外,光合作用与核糖体蛋白和翻译起始因子的多核糖体丰度和磷酸化相关。我们的结果表明翻译活动遵循光合作用活动,表明代谢(羧化-氧合平衡)对蛋白质合成的显着影响。我们表明,蛋白质的碳分配在净光合作用的 1-2.5% 范围内,随着光合作用速率的增加而增加,并且与总氨基酸含量无关。此外,光合作用与核糖体蛋白和翻译起始因子的多核糖体丰度和磷酸化相关。我们的结果表明翻译活动遵循光合作用活动,表明代谢(羧化-氧合平衡)对蛋白质合成的显着影响。
更新日期:2020-02-01
down
wechat
bug