当前位置: X-MOL 学术Plasma Sources Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ion energy control via the Electrical Asymmetry Effect to tune coating properties in reactive radio frequency sputtering
Plasma Sources Science and Technology ( IF 3.3 ) Pub Date : 2019-11-28 , DOI: 10.1088/1361-6595/ab504b
Stefan Ries 1 , Lars Banko 2 , Marcus Hans 3 , Daniel Primetzhofer 4 , Jochen M Schneider 3 , Alfred Ludwig 2 , Peter Awakowicz 1 , Julian Schulze 1, 5
Affiliation  

A knowledge-based understanding of the plasma-surface-interaction with the aim to precisely control (reactive) sputtering processes for the deposition of thin films with tailored and reproducible properties is highly desired for industrial applications. In order to understand the effect of plasma parameter variations on the film properties, a single plasma parameter needs to be varied, while all other process and plasma parameters should remain constant. In this work, we use the Electrical Asymmetry Effect (EAE) in a multi-frequency capacitively coupled plasma (MFCCP) to control the ion energy at the substrate without affecting the ion-to-growth flux ratio by adjusting the relative phase between two consecutive driving harmonics an their voltage amplitudes. Measurements of the ion energy distribution function (IEDF) and ion flux at the substrate by a retarding field energy analyzer (RFEA) combined with the determined deposition rate Rd for a reactive Ar/N2 (8:1) plasma at 0.5 Pa show a possible variation of the mean ion energy at the substrate Em ig within a range of 38 eV and 81 eV that allows the modification of the film characteristics at the grounded electrode, when changing the relative phase shift θ between the applied voltage frequencies, while the ion-to-growth flux ratio Γig/Γgr can be kept constant. AlN thin films are deposited and exhibit an increase in compressive film stress from -5.8 to -8.4 GPa as well as an increase in elastic modulus from 175 to 224 GPa as a function of the mean ion energy. Moreover, a transition from the preferential orientation (002) at low ion energies to the (100), (101) and (110) orientations at higher ion energies is observed. In this way, the effects of the ion energy on the growing film are identified, while other process relevant parameters remain unchanged.

中文翻译:

通过电不对称效应控制离子能量以调节反应射频溅射中的涂层性能

工业应用非常需要对等离子体表面相互作用的基于知识的理解,目的是精确控制(反应)溅射过程,以沉积具有定制和可重复特性的薄膜。为了了解等离子体参数变化对薄膜特性的影响,需要改变单个等离子体参数,而所有其他工艺和等离子体参数应保持不变。在这项工作中,我们在多频电容耦合等离子体 (MFCCP) 中使用电不对称效应 (EAE) 来控制基板上的离子能量,而不会通过调整两个连续的相对相位来影响离子与生长通量比。驱动谐波及其电压幅度。通过延迟场能量分析仪 (RFEA) 测量基板上的离子能量分布函数 (IEDF) 和离子通量,并结合确定的 0.5 Pa 反应性 Ar/N2 (8:1) 等离子体的沉积速率 Rd 显示可能的当改变施加电压频率之间的相对相移 θ 时,衬底 Em ig 的平均离子能量在 38 eV 和 81 eV 的范围内变化,这允许修改接地电极的薄膜特性,而离子 -生长通量比Γig/Γgr 可以保持恒定。沉积 AlN 薄膜并表现出压缩膜应力从 -5.8 GPa 增加到 -8.4 GPa,以及作为平均离子能量函数的弹性模量从 175 GPa 增加到 224 GPa。而且,观察到从低离子能量的优先取向 (002) 到较高离子能量的 (100)、(101) 和 (110) 取向的转变。这样,离子能量对生长膜的影响被识别,而其他工艺相关参数保持不变。
更新日期:2019-11-28
down
wechat
bug