当前位置: X-MOL 学术Plasma Sources Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of a Semi-Empirical 1.5D Plasma Fluid Model for a Single Microdischarge in Atmospheric Pressure Dielectric Barrier Discharges
Plasma Sources Science and Technology ( IF 3.3 ) Pub Date : 2019-11-28 , DOI: 10.1088/1361-6595/ab515c
K-M Lin , Y-H Huang , W-Y Guo , Y-S Chang

A semi-empirical 1.5D plasma fluid model (PFM) is proposed to model a single microdischarge (MD) in atmospheric pressure air dielectric barrier discharges (APADBDs). The framework of air chemistry is considered and the effect of photoionization is modeled in the axisymmetric domain. The accumulation factor is introduced and determined by experimental data to model the accumulation of charged particles on the dielectric surface. In the gap of 1.4 mm, the simulated electric current reaches 72 mA, which is close to the typically measured electric current. The simulated maximum wave velocity is around 1.7×106 m s-1, which is close to the available experimental data. The change of simulated charge density implies that the average accumulation of charged particles on the dielectric surface during each half period is around 40 nC cm-2, which is in the same order of magnitude as that evaluated in the previous measurements as 51.5 nC cm-2. In the gap of 2.0 mm, the simulated current reaches 113 mA, which is close to the typically measured current. Although the gap voltage of the 2.0 mm gap is higher than that of the 1.4 mm gap, the average electric field of the 2.0 mm gap is lower than that of the 1.4 mm gap before breakdown due to larger gap distance. The maximum wave velocity is faster than that simulated in the gap of 1.4 mm due to the longer gas distance for developing higher wave velocity as 2.4×106 m s-1. In general, the proposed semi-empirical 1.5D PFM captures the dynamics of a single MD in APADBDs.

中文翻译:

大气压介质阻挡放电中单次微放电的半经验 1.5D 等离子体流体模型的开发

提出了一种半经验的 1.5D 等离子体流体模型 (PFM),以模拟大气压空气介质阻挡放电 (APADBD) 中的单个微放电 (MD)。考虑了空气化学的框架,并在轴对称域中模拟了光电离效应。累积因子是通过实验数据引入和确定的,以模拟带电粒子在电介质表面的累积。在 1.4 mm 的间隙内,模拟电流达到 72 mA,接近典型测量的电流。模拟的最大波速约为1.7×106 m s-1,与现有实验数据接近。模拟电荷密度的变化意味着每半周期带电粒子在电介质表面的平均积累约为 40 nC cm-2,这与之前测量中评估的 51.5 nC cm-2 处于同一数量级。在 2.0 mm 的间隙内,模拟电流达到 113 mA,接近典型测量电流。虽然 2.0 mm 间隙的间隙电压高于 1.4 mm 间隙的间隙电压,但由于间隙距离较大,2.0 mm 间隙的平均电场低于击穿前的 1.4 mm 间隙。由于产生更高波速的气体距离较长,为2.4×106 m s-1,因此最大波速比在1.4 mm间隙中模拟的要快。一般来说,提议的半经验 1.5D PFM 捕获了 APADBD 中单个 MD 的动态。这接近于通常测量的电流。虽然 2.0 mm 间隙的间隙电压高于 1.4 mm 间隙的间隙电压,但由于间隙距离较大,2.0 mm 间隙的平均电场低于击穿前的 1.4 mm 间隙。由于产生更高波速的气体距离较长,为2.4×106 m s-1,因此最大波速比在1.4 mm间隙中模拟的要快。一般来说,提议的半经验 1.5D PFM 捕获了 APADBD 中单个 MD 的动态。这接近于通常测量的电流。虽然 2.0 mm 间隙的间隙电压高于 1.4 mm 间隙的间隙电压,但由于间隙距离较大,2.0 mm 间隙的平均电场低于击穿前的 1.4 mm 间隙。由于产生更高波速的气体距离较长,为2.4×106 m s-1,因此最大波速比在1.4 mm间隙中模拟的要快。一般来说,提议的半经验 1.5D PFM 捕获了 APADBD 中单个 MD 的动态。4 mm 由于更长的气体距离以产生更高的波速为 2.4×106 m s-1。一般来说,提议的半经验 1.5D PFM 捕获了 APADBD 中单个 MD 的动态。4 mm 由于更长的气体距离以产生更高的波速为 2.4×106 m s-1。一般来说,提议的半经验 1.5D PFM 捕获了 APADBD 中单个 MD 的动态。
更新日期:2019-11-28
down
wechat
bug