当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A reduced reaction mechanism of biodiesel surrogates with low temperature chemistry for multidimensional engine simulation
Combustion and Flame ( IF 4.4 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.combustflame.2019.11.002
Lei Zhang , Xiaohua Ren , Zhigang Lan

Abstract A reduced biodiesel mechanism composed of 156 species and 589 reactions is reduced from an original complex mechanism (3299 species and 10806 reactions) based on MD, MD9D, and n-heptane as the surrogates. The mechanism reduction is conducted using the path flux analysis method, which considers multiple reaction path generations in the analysis of species interactions, and isomer lumping. Calculations of homogeneous auto-ignition and perfectly stirred reactor (PSR) combustion on a variety of reaction states, including pressures from 1 to 100 atm and equivalence ratios from 0.5 to 2, are the basis of the reduction. The initial temperatures are from 700 to 1800 K for the auto-ignition, and the inlet temperature is 300 K for the PSR. These reaction states cover the high-pressure and low-temperature operating conditions of future engines using advanced combustion technologies characterized by fuel–air premixing and auto-ignition. The fidelity of the resulting reduced mechanism with low-temperature chemistry is examined using a variety of applications. Close agreements between the reduced and original mechanisms are obtained in the predictions of ignition delay, history of mixture temperature, and species mole fraction during homogeneous auto-ignition and the temperature profile in PSR. The reduced mechanism, further integrated with a nitrogen oxides chemistry and a two-step soot model, is implemented into the KIVA/CHEMKIN program for the 3D simulation of biodiesel spray combustion. The predicted liquid and vapor penetrations agree with the experimental data in a non-reactive biodiesel spray simulation, indicating an accurate estimation of biodiesel physical properties. In the simulation of biodiesel spray combustion, predicted spatial distributions of hydroxyl radical and soot also agree with the corresponding experimental data.

中文翻译:

用于多维发动机模拟的低温化学生物柴油替代物的还原反应机制

摘要 以MD、MD9D和正庚烷为替代物的原始复杂机制(3299个物种和10806个反应)简化为由156个物种和589个反应组成的还原生物柴油机制。使用路径通量分析方法进行机理简化,该方法在物种相互作用和异构体集总的分析中考虑了多个反应路径的生成。在各种反应状态下(包括 1 到 100 个大气压的压力和 0.5 到 2 的当量比)计算均相自燃和完美搅拌反应器 (PSR) 燃烧是减少的基础。自燃的初始温度为 700 至 1800 K,PSR 的入口温度为 300 K。这些反应状态涵盖了使用以燃料-空气预混和自动点火为特征的先进燃烧技术的未来发动机的高压和低温运行条件。使用各种应用程序检查由此产生的低温化学还原机制的保真度。在预测点火延迟、混合物温度的历史和均质自燃期间的物种摩尔分数以及 PSR 中的温度分布时,获得了简化机制和原始机制之间的密切一致性。简化的机制,进一步与氮氧化物化学和两步烟尘模型相结合,在 KIVA/CHEMKIN 程序中实施,用于生物柴油喷雾燃烧的 3D 模拟。预测的液体和蒸汽渗透率与非反应性生物柴油喷雾模拟中的实验数据一致,表明对生物柴油物理特性的准确估计。在生物柴油喷雾燃烧的模拟中,羟基自由基和烟尘的预测空间分布也与相应的实验数据一致。
更新日期:2020-02-01
down
wechat
bug