当前位置: X-MOL 学术Proteins Struct. Funct. Bioinform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structure prediction of biological assemblies using GALAXY in CAPRI rounds 38-45.
Proteins: Structure, Function, and Bioinformatics ( IF 3.2 ) Pub Date : 2019-11-27 , DOI: 10.1002/prot.25859
Taeyong Park 1 , Hyeonuk Woo 1 , Minkyung Baek 1 , Jinsol Yang 1 , Chaok Seok 1
Affiliation  

We participated in CARPI rounds 38‐45 both as a server predictor and a human predictor. These CAPRI rounds provided excellent opportunities for testing prediction methods for three classes of protein interactions, that is, protein‐protein, protein‐peptide, and protein‐oligosaccharide interactions. Both template‐based methods (GalaxyTBM for monomer protein, GalaxyHomomer for homo‐oligomer protein, GalaxyPepDock for protein‐peptide complex) and ab initio docking methods (GalaxyTongDock and GalaxyPPDock for protein oligomer, GalaxyPepDock‐ab‐initio for protein‐peptide complex, GalaxyDock2 and Galaxy7TM for protein‐oligosaccharide complex) have been tested. Template‐based methods depend heavily on the availability of proper templates and template‐target similarity, and template‐target difference is responsible for inaccuracy of template‐based models. Inaccurate template‐based models could be improved by our structure refinement and loop modeling methods based on physics‐based energy optimization (GalaxyRefineComplex and GalaxyLoop) for several CAPRI targets. Current ab initio docking methods require accurate protein structures as input. Small conformational changes from input structure could be accounted for by our docking methods, producing one of the best models for several CAPRI targets. However, predicting large conformational changes involving protein backbone is still challenging, and full exploration of physics‐based methods for such problems is still to come.

中文翻译:

在CAPRI第38-45轮中使用GALAXY进行生物装配的结构预测。

我们以服务器预测器和人工预测器的形式参加了CARPI第38至45轮。这些CAPRI回合为测试三类蛋白质相互作用的预测方法提供了极好的机会,这三类蛋白质相互作用分别是蛋白质-蛋白质,蛋白质-肽和蛋白质-寡糖相互作用。两种基于模板的方法(用于单体蛋白的GalaxyTBM,用于低聚物蛋白的GalaxyHomomer,用于蛋白肽复合物的GalaxyPepDock)和从头对接方法(用于蛋白寡聚体的GalaxyTongDock和GalaxyPPDock),用于蛋白肽复合物的GalaxyPepDock-ab-initio,GalaxyDock2以及针对蛋白质-寡糖复合物的Galaxy7TM均已进行了测试。基于模板的方法在很大程度上取决于适当模板的可用性和模板目标的相似性,而模板目标的差异是导致基于模板的模型不准确的原因。基于我们针对多个CAPRI目标的基于物理能量优化(GalaxyRefineComplex和GalaxyLoop)的结构优化和循环建模方法,可以改善基于模板的不正确模型。当前的从头开始对接方法需要精确的蛋白质结构作为输入。输入结构的微小构象变化可以通过我们的对接方法解决,从而为多个CAPRI目标提供了最佳模型之一。然而,预测涉及蛋白质骨架的大构象变化仍然具有挑战性,针对此类问题的基于物理学的方法的全面探索仍在进行中。当前的从头开始对接方法需要精确的蛋白质结构作为输入。输入结构的微小构象变化可以通过我们的对接方法解决,从而为多个CAPRI目标提供了最佳模型之一。然而,预测涉及蛋白质骨架的大构象变化仍然具有挑战性,针对此类问题的基于物理学的方法的全面探索仍在进行中。当前的从头开始对接方法需要精确的蛋白质结构作为输入。输入结构的微小构象变化可以通过我们的对接方法解决,从而为多个CAPRI目标提供了最佳模型之一。然而,预测涉及蛋白质骨架的大构象变化仍然具有挑战性,针对此类问题的基于物理学的方法的全面探索仍在进行中。
更新日期:2019-11-27
down
wechat
bug