当前位置: X-MOL 学术J. Comput. Aid. Mol. Des. › 论文详情
Prediction of the n -octanol/water partition coefficients in the SAMPL6 blind challenge from MST continuum solvation calculations
Journal of Computer-Aided Molecular Design ( IF 3.250 ) Pub Date : 2019-11-27 , DOI: 10.1007/s10822-019-00262-4
William J. Zamora, Silvana Pinheiro, Kilian German, Clara Ràfols, Carles Curutchet, F. Javier Luque

The IEFPCM/MST continuum solvation model is used for the blind prediction of n-octanol/water partition of a set of 11 fragment-like small molecules within the SAMPL6 Part II Partition Coefficient Challenge. The partition coefficient of the neutral species (log P) was determined using an extended parametrization of the B3LYP/6-31G(d) version of the Miertus–Scrocco–Tomasi continuum solvation model in n-octanol. Comparison with the experimental data provided for partition coefficients yielded a root-mean square error (rmse) of 0.78 (log P units), which agrees with the accuracy reported for our method (rmse = 0.80) for nitrogen-containing heterocyclic compounds. Out of the 91 sets of log P values submitted by the participants, our submission is within those with an rmse < 1 and among the four best ranked physical methods. The largest errors involve three compounds: two with the largest positive deviations (SM13 and SM08), and one with the largest negative deviations (SM15). Here we report the potentiometric determination of the log P for SM13, leading to a value of 3.62 ± 0.02, which is in better agreement with most empirical predictions than the experimental value reported in SAMPL6. In addition, further inclusion of several conformations for SM08 significantly improved our results. Inclusion of these refinements led to an overall error of 0.51 (log P units), which supports the reliability of the IEFPCM/MST model for predicting the partitioning of neutral compounds.
更新日期:2019-11-28

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug