当前位置: X-MOL 学术Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Elastomeric Microlattice Impact Attenuators
Matter ( IF 17.3 ) Pub Date : 2019-11-27 , DOI: 10.1016/j.matt.2019.10.004
Eric C. Clough , Thomas A. Plaisted , Zak C. Eckel , Kenneth Cante , Jacob M. Hundley , Tobias A. Schaedler

Impact-attenuating materials are designed to absorb impact energy through the collapse of pores within the material below a threshold force (or acceleration), thereby mitigating damage or injury. Recent advances in additive manufacturing techniques have enabled the fabrication of cellular materials with architected lattice topology. Here it is demonstrated that, via design of cellular architecture, the dynamic stress-strain response of elastomeric lattices can be tailored to achieve impact-attenuation performance exceeding state-of-the-art foams for both single- and multi-hit scenarios. The additional degrees of freedom in the design of the cellular architecture of lattice-based impact attenuators are then leveraged to optimize their performance for a typical helmet impact scenario wherein the contact area increases during deformation. An improvement over state-of-the-art vinyl-nitrile foam helmet pads is achieved during a standard helmet test, leading to lower head acceleration. This breakthrough could pave the way to helmets with improved injury protection.



中文翻译:

弹性微晶格冲击衰减器

减震材料的设计目的是通过低于阈值力(或加速度)的材料内孔的塌陷吸收冲击能量,从而减轻损坏或伤害。增材制造技术的最新进展已使具有结构化晶格拓扑结构的蜂窝材料的制造成为可能。在此证明,通过多孔结构的设计,可以对弹性体晶格的动态应力-应变响应进行定制,以实现冲击衰减性能,超过单次和多次撞击情况下的最新泡沫。然后,利用基于晶格的冲击衰减器的蜂窝结构设计中的其他自由度,以优化其在变形过程中接触面积增加的典型头盔冲击情况下的性能。在标准头盔测试期间,对最先进的乙烯基腈泡沫头盔垫进行了改进,从而降低了头部的加速度。这项突破可以为头盔提供更好的伤害防护功能。

更新日期:2019-11-27
down
wechat
bug