当前位置: X-MOL 学术Beilstein. J. Org. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbazole-functionalized hyper-cross-linked polymers for CO2 uptake based on Friedel-Crafts polymerization on 9-phenylcarbazole.
Beilstein Journal of Organic Chemistry ( IF 2.2 ) Pub Date : 2019-11-26 , DOI: 10.3762/bjoc.15.279
Dandan Fang 1 , Xiaodong Li 1 , Meishuai Zou 1 , Xiaoyan Guo 1 , Aijuan Zhang 1
Affiliation  

To systematically explore the effects of the synthesis conditions on the porosity of hyper-cross-linked polymers (HCPs), a series of 9-phenylcarbazole (9-PCz) HCPs (P1-P11) has been made by changing the molar ratio of cross-linker to monomer, the reaction temperature T 1, the used amount of catalyst and the concentration of reactants. Fourier transform infrared spectroscopy was utilized to characterize the structure of the obtained polymers. The TG analysis of the HCPs showed good thermal stability. More importantly, a comparative study on the porosity revealed that: the molar ratio of cross-linker to monomer was the main influence factor of the BET specific surface area. Increasing the reaction temperature T 1 or changing the used amount of catalyst could improve the total pore volume greatly but sacrificed a part of the BET specific surface area. Fortunately changing the concentration of reactants could remedy this situation. Slightly changing the concentration of reactants could simultaneously obtain a high surface area and a high total pore volume. The BET specific surface areas of P3 was up to 769 m2 g-1 with narrow pore size distribution and the CO2 adsorption capacity of P11 was up to 52.4 cm3 g-1 (273 K/1.00 bar).

中文翻译:

咔唑官能化的超交联聚合物,用于基于9-苯基咔唑的Friedel-Crafts聚合反应吸收CO2。

为了系统地研究合成条件对超交联聚合物(HCP)孔隙率的影响,通过改变交联摩尔比,制备了一系列9-苯基咔唑(9-PCz)HCP(P1-P11)。 -连接至单体的连接剂,反应温度T 1,催化剂的使用量和反应物的浓度。利用傅立叶变换红外光谱来表征所获得的聚合物的结构。HCP的TG分析显示出良好的热稳定性。更重要的是,对孔隙率的比较研究表明:交联剂与单体的摩尔比是BET比表面积的主要影响因素。提高反应温度T 1或改变催化剂的使用量可以大大改善总孔体积,但是牺牲了一部分BET比表面积。幸运的是,改变反应物的浓度可以纠正这种情况。稍微改变反应物的浓度可以同时获得高的表面积和高的总孔体积。P3的BET比表面积高达769 m2 g-1,且孔径分布窄,P11的CO2吸附容量高达52.4 cm3 g-1(273 K / 1.00 bar)。
更新日期:2019-11-27
down
wechat
bug