当前位置: X-MOL 学术Ultramicroscopy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantitative analysis of spectroscopic Low Energy Electron Microscopy data: High-dynamic range imaging, drift correction and cluster analysis
Ultramicroscopy ( IF 2.1 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.ultramic.2019.112913
T A de Jong 1 , D N L Kok 2 , A J H van der Torren 1 , H Schopmans 1 , R M Tromp 3 , S J van der Molen 1 , J Jobst 1
Affiliation  

For many complex materials systems, low-energy electron microscopy (LEEM) offers detailed insights into morphology and crystallography by naturally combining real-space and reciprocal-space information. Its unique strength, however, is that all measurements can easily be performed energy-dependently. Consequently, one should treat LEEM measurements as multi-dimensional, spectroscopic datasets rather than as images to fully harvest this potential. Here we describe a measurement and data analysis approach to obtain such quantitative spectroscopic LEEM datasets with high lateral resolution. The employed detector correction and adjustment techniques enable measurement of true reflectivity values over four orders of magnitudes of intensity. Moreover, we show a drift correction algorithm, tailored for LEEM datasets with inverting contrast, that yields sub-pixel accuracy without special computational demands. Finally, we apply dimension reduction techniques to summarize the key spectroscopic features of datasets with hundreds of images into two single images that can easily be presented and interpreted intuitively. We use cluster analysis to automatically identify different materials within the field of view and to calculate average spectra per material. We demonstrate these methods by analyzing bright-field and dark-field datasets of few-layer graphene grown on silicon carbide and provide a high-performance Python implementation.

中文翻译:

光谱低能电子显微镜数据的定量分析:高动态范围成像、漂移校正和聚类分析

对于许多复杂的材料系统,低能电子显微镜 (LEEM) 通过自然地结合实空间和倒易空间信息,提供对形态和晶体学的详细见解。然而,它的独特优势在于所有测量都可以根据能量轻松地进行。因此,人们应该将 LEEM 测量视为多维光谱数据集,而不是图像以充分挖掘这种潜力。在这里,我们描述了一种测量和数据分析方法,以获得这种具有高横向分辨率的定量光谱 LEEM 数据集。所采用的检测器校正和调整技术能够在四个数量级的强度上测量真实反射率值。此外,我们展示了一种漂移校正算法,专为具有反转对比度的 LEEM 数据集量身定制,无需特殊计算要求即可产生亚像素精度。最后,我们应用降维技术将具有数百张图像的数据集的关键光谱特征总结为两幅可以轻松呈现和直观解释的图像。我们使用聚类分析来自动识别视场内的不同材料并计算每种材料的平均光谱。我们通过分析碳化硅上生长的少层石墨烯的明场和暗场数据集来演示这些方法,并提供高性能的 Python 实现。我们应用降维技术将具有数百张图像的数据集的关键光谱特征总结为两幅可以轻松呈现和直观解释的图像。我们使用聚类分析来自动识别视场内的不同材料并计算每种材料的平均光谱。我们通过分析碳化硅上生长的少层石墨烯的明场和暗场数据集来演示这些方法,并提供高性能的 Python 实现。我们应用降维技术将具有数百张图像的数据集的关键光谱特征总结为两幅可以轻松呈现和直观解释的图像。我们使用聚类分析来自动识别视场内的不同材料并计算每种材料的平均光谱。我们通过分析碳化硅上生长的少层石墨烯的明场和暗场数据集来演示这些方法,并提供高性能的 Python 实现。
更新日期:2020-06-01
down
wechat
bug