当前位置: X-MOL 学术Int. J. Multiphase Flow › 论文详情
A Numerical Analysis of Air Entrapment During Droplet Impact on an Immiscible Liquid Film
International Journal of Multiphase Flow ( IF 2.829 ) Pub Date : 2019-11-23 , DOI: 10.1016/j.ijmultiphaseflow.2019.103175
Firoozeh Yeganehdoust, Reza Attarzadeh, Ida Karimfazli, Ali Dolatabadi

The air entrapment during droplet impingement is responsible for spontaneous droplet bouncing on an arbitrary solid surface at low Weber numbers. However, for the impact on liquid film surfaces, the outcome would significantly change, making it more favorable for the fabrication of non-wetting lubricant impregnated surfaces (LIS/SLIPS). In this paper, we describe a problem associated with the impact on a liquid surface using a three-phase flow model that captures the details of the gas layer thickness and dynamics of fluid motions. The numerical model was based on the finite volume solution coupled with the volume of fluid method to track the phases. The model was validated with the analytical solution. Consequently, the numerical tool was utilized to investigate the thickness of the entrapped air during the impact process while the behavior of droplet and the immiscible liquid film was quantitatively measured. The morphology of the interfacial gas layer was analyzed for key parameters including impact velocity and film thickness. It was observed that the presence of liquid film can reduce the probability of rupturing the gas layer. The results for the profile of liquid film during droplet impact illustrated that the effect of film thickness can considerably influence the bouncing behavior.
更新日期:2019-11-26

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug