当前位置: X-MOL 学术Solid State Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental design on determination of Sn(II) by the modified carbon paste electrode with Fe(II)-exchanged clinoptilolite nanoparticles
Solid State Sciences ( IF 3.4 ) Pub Date : 2020-01-01 , DOI: 10.1016/j.solidstatesciences.2019.106082
Nafiseh Pourshirband , Alireza Nezamzadeh-Ejhieh

Abstract In the present study, clinoptilolite nanoparticles (CN) were prepared in a planetary ball-mill instrument and ion exchanged in Fe(II) solution. The resulted Fe(II)–CN material was then used as an effective modifier to modify carbon paste electrode (CPE). When the resulted Fe(II)–CN-CPE electrode was immersed in HCl supporting electrolyte, Fe(II) cations were located at the electrode-solution interface via an ion exchange process with protons which were present in the supporting electrolyte solution. Next, Fe(II) cations could be immediately oxidized to Fe(III) at the electrode surface by scanning the potential toward more positive values in order to create an anodic peak current. When Sn(II) cations were added into the supporting electrolyte solution, they could immediately react with the produced Fe(III) cations as well. This reaction provided more Fe(II) cations at the electrode-solution interface, causing a significant increase in the peak current of the electro-oxidation of Fe(II) cations. Hence, this electrocatalytic current was utilized for the voltammetric determination of Sn(II) in aqueous solution. In addition, the experimental design by response surface methodology was applied to study the interaction effects between the influencing variables. Further, the best voltammetric response was obtained by performing the voltammetric measurement based on the run (with conditions of pH 2, ν = 100 mV s−1, modifier% = 10%, and CFe = 0.7 mol L−1). Finally, the Fe(II)–CN-CPE electrode showed a linear response in the concentration range of 10–400 μmol L−1 Sn(II) with a detection limit (DL) of 0.1 μmol L−1.

中文翻译:

Fe(II)交换斜发沸石纳米颗粒改性碳糊电极测定Sn(II)的实验设计

摘要 在本研究中,斜发沸石纳米颗粒 (CN) 在行星式球磨仪中制备并在 Fe(II) 溶液中进行离子交换。然后将所得的 Fe(II)-CN 材料用作有效的改性剂来改性碳糊电极 (CPE)。当得到的 Fe(II)-CN-CPE 电极浸入 HCl 支持电解质中时,Fe(II) 阳离子通过离子交换过程与支持电解质溶液中存在的质子定位在电极 - 溶液界面。接下来,Fe(II) 阳离子可以通过向更正值扫描电位以产生阳极峰值电流,从而在电极表面立即氧化为 Fe(III)。当将 Sn(II) 阳离子添加到支持电解质溶液中时,它们也可以立即与生成的 Fe(III) 阳离子反应。该反应在电极-溶液界面提供了更多的 Fe(II) 阳离子,导致 Fe(II) 阳离子电氧化的峰值电流显着增加。因此,该电催化电流用于伏安法测定水溶液中的 Sn(II)。此外,应用响应面方法的实验设计来研究影响变量之间的交互作用。此外,通过基于运行进行伏安测量获得最佳伏安响应(条件为 pH 2,ν = 100 mV s-1,改性剂% = 10%,CFe = 0.7 mol L-1)。最后,Fe(II)-CN-CPE 电极在 10-400 μmol L-1 Sn(II) 的浓度范围内表现出线性响应,检测限 (DL) 为 0.1 μmol L-1。导致 Fe(II) 阳离子电氧化的峰值电流显着增加。因此,该电催化电流用于伏安法测定水溶液中的 Sn(II)。此外,应用响应面方法的实验设计来研究影响变量之间的交互作用。此外,通过基于运行(pH 2,ν = 100 mV s-1,改性剂% = 10%,CFe = 0.7 mol L-1)进行伏安测量,获得了最佳伏安响应。最后,Fe(II)-CN-CPE 电极在 10-400 μmol L-1 Sn(II) 的浓度范围内表现出线性响应,检测限 (DL) 为 0.1 μmol L-1。导致 Fe(II) 阳离子电氧化的峰值电流显着增加。因此,该电催化电流用于伏安法测定水溶液中的 Sn(II)。此外,应用响应面方法的实验设计来研究影响变量之间的交互作用。此外,通过基于运行进行伏安测量获得最佳伏安响应(条件为 pH 2,ν = 100 mV s-1,改性剂% = 10%,CFe = 0.7 mol L-1)。最后,Fe(II)-CN-CPE 电极在 10-400 μmol L-1 Sn(II) 的浓度范围内表现出线性响应,检测限 (DL) 为 0.1 μmol L-1。该电催化电流用于伏安法测定水溶液中的 Sn(II)。此外,应用响应面方法的实验设计来研究影响变量之间的交互作用。此外,通过基于运行(pH 2,ν = 100 mV s-1,改性剂% = 10%,CFe = 0.7 mol L-1)进行伏安测量,获得了最佳伏安响应。最后,Fe(II)-CN-CPE 电极在 10-400 μmol L-1 Sn(II) 的浓度范围内表现出线性响应,检测限 (DL) 为 0.1 μmol L-1。该电催化电流用于伏安法测定水溶液中的 Sn(II)。此外,应用响应面方法的实验设计来研究影响变量之间的交互作用。此外,通过基于运行(pH 2,ν = 100 mV s-1,改性剂% = 10%,CFe = 0.7 mol L-1)进行伏安测量,获得了最佳伏安响应。最后,Fe(II)-CN-CPE 电极在 10-400 μmol L-1 Sn(II) 的浓度范围内表现出线性响应,检测限 (DL) 为 0.1 μmol L-1。通过基于运行进行伏安测量获得最佳伏安响应(条件为 pH 2,ν = 100 mV s-1,改性剂% = 10%,CFe = 0.7 mol L-1)。最后,Fe(II)-CN-CPE 电极在 10-400 μmol L-1 Sn(II) 的浓度范围内表现出线性响应,检测限 (DL) 为 0.1 μmol L-1。通过基于运行进行伏安测量获得最佳伏安响应(条件为 pH 2,ν = 100 mV s-1,改性剂% = 10%,CFe = 0.7 mol L-1)。最后,Fe(II)-CN-CPE 电极在 10-400 μmol L-1 Sn(II) 的浓度范围内表现出线性响应,检测限 (DL) 为 0.1 μmol L-1。
更新日期:2020-01-01
down
wechat
bug