当前位置: X-MOL 学术Mol. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sustainable production of formic acid from biomass and carbon dioxide
Molecular Catalysis ( IF 3.9 ) Pub Date : 2019-11-25 , DOI: 10.1016/j.mcat.2019.110716
Xi Chen , Ying Liu , Jingwei Wu

Formic acid (FA) is a versatile molecule with widespread applications in both chemical industries and renewable energy fields. However, the commercial manufacture of FA is still based on non-renewable fossil feedstock, and thus alternative methods to obtain FA from renewable resources are highly desirable and attract significant scientific attentions. Biomass represents the largest carbon resource on Earth, and various strategies including acid hydrolysis, wet oxidation and catalytic oxidation have been developing to transform biomass resources into FA with relatively high yield and selectivity. Meanwhile, carbon dioxide (CO2) as an inexpensive and widely available C1 platform compound, is also a potential resource to produce FA via hydrogenation by different strategies such as chemical, photochemical and electrochemical catalysis. In this review, FA production from biomass resources especially cellulosic biomass will be systematically summarized according to the transformation methods. Following this, recent progresses in the CO2 valorization to generate FA will be generally illustrated. Finally, the catalytic dehydrogenation of FA to generate hydrogen as a clean and renewable energy fuel will be concisely mentioned since it exemplifies the critical role of FA in future energy restructure tactics.



中文翻译:

由生物质和二氧化碳可持续生产甲酸

甲酸(FA)是一种多功能分子,在化学工业和可再生能源领域都有广泛的应用。但是,FA的商业生产仍基于不可再生的化石原料,因此从可再生资源中获得FA的替代方法是非常需要的,并引起了广泛的科学关注。生物质是地球上最大的碳资源,并且已经开发出各种策略,包括酸水解,湿式氧化和催化氧化,以相对较高的产率和选择性将生物质资源转化为FA。同时,二氧化碳(CO 2)作为一种廉价且可广泛获得的C1平台化合物,也是一种可通过以下途径生产FA的潜在资源通过化学,光化学和电化学催化等不同策略进行氢化。在这篇综述中,将根据转化方法系统地总结由生物质资源特别是纤维素生物质生产脂肪酸的方法。此后,将大体说明在生成FA的CO 2增值中的最新进展。最后,将简要提及FA的催化脱氢以产生氢作为清洁和可再生能源的燃料,因为它例证了FA在未来能源重组策略中的关键作用。

更新日期:2019-11-26
down
wechat
bug