当前位置: X-MOL 学术Genome Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
DNA methylation aging clocks: challenges and recommendations
Genome Biology ( IF 10.1 ) Pub Date : 2019-11-25 , DOI: 10.1186/s13059-019-1824-y
Christopher G Bell 1 , Robert Lowe 2 , Peter D Adams 3, 4 , Andrea A Baccarelli 5 , Stephan Beck 6 , Jordana T Bell 7 , Brock C Christensen 8, 9, 10 , Vadim N Gladyshev 11 , Bastiaan T Heijmans 12 , Steve Horvath 13, 14 , Trey Ideker 15 , Jean-Pierre J Issa 16 , Karl T Kelsey 17, 18 , Riccardo E Marioni 19, 20 , Wolf Reik 21, 22 , Caroline L Relton 23 , Leonard C Schalkwyk 24 , Andrew E Teschendorff 25, 26 , Wolfgang Wagner 27 , Kang Zhang 28 , Vardhman K Rakyan 2
Affiliation  

Epigenetic clocks comprise a set of CpG sites whose DNA methylation levels measure subject age. These clocks are acknowledged as a highly accurate molecular correlate of chronological age in humans and other vertebrates. Also, extensive research is aimed at their potential to quantify biological aging rates and test longevity or rejuvenating interventions. Here, we discuss key challenges to understand clock mechanisms and biomarker utility. This requires dissecting the drivers and regulators of age-related changes in single-cell, tissue- and disease-specific models, as well as exploring other epigenomic marks, longitudinal and diverse population studies, and non-human models. We also highlight important ethical issues in forensic age determination and predicting the trajectory of biological aging in an individual.

中文翻译:


DNA 甲基化衰老时钟:挑战和建议



表观遗传时钟由一组 CpG 位点组成,其 DNA 甲基化水平可测量受试者的年龄。这些时钟被认为是人类和其他脊椎动物实际年龄的高度精确的分子相关性。此外,广泛的研究旨在发掘它们量化生物衰老率和测试长寿或恢复活力干预措施的潜力。在这里,我们讨论了解时钟机制和生物标志物效用的关键挑战。这需要在单细胞、组织和疾病特异性模型中剖析年龄相关变化的驱动因素和调节因素,并探索其他表观基因组标记、纵向和多样化的群体研究以及非人类模型。我们还强调了法医年龄确定和预测个体生物衰老轨迹中的重要伦理问题。
更新日期:2019-11-25
down
wechat
bug