当前位置: X-MOL 学术Mol. Pharmaceutics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular Interpretation of the Compaction Performance and Mechanical Properties of Caffeine Cocrystals: A Polymorphic Study.
Molecular Pharmaceutics ( IF 4.5 ) Pub Date : 2019-12-19 , DOI: 10.1021/acs.molpharmaceut.9b00377
Aditya B Singaraju 1 , Dherya Bahl 1 , Chenguang Wang 2 , Dale C Swenson 3 , Changquan Calvin Sun 2 , Lewis L Stevens 1
Affiliation  

The 1:1 caffeine (CAF) and 3-nitrobenzoic acid (NBA) cocrystal (CAF:NBA) displays polymorphism. Each polymorph shares the same docking synthon that connects individual CAF and NBA molecules within the asymmetric unit; however, the extended intermolecular interactions are significantly different between the two polymorphic modifications. These alternative interaction topologies translate to distinct structural motifs, mechanical properties, and compaction performance. To assist our molecular interpretation of the structure-mechanics-performance relationships for these cocrystal polymorphs, we combine powder Brillouin light scattering (p-BLS) to determine the mechanical properties with energy frameworks calculations to identify potentially available slip systems that may facilitate plastic deformation. The previously reported Form 1 for CAF:NBA adopts a 2D-layered crystal structure with a conventional 3.4 Å layer-to-layer separation distance. For Form 2, a columnar structure of 1D-tapes is displayed with CAF:NBA dimers running parallel to the (110) crystallographic direction. Consistent with the layered crystal structure, the shear modulus for Form 1 is significantly reduced relative to Form 2, and moreover, our p-BLS spectra for Form 1 clearly display the presence of low-velocity shear modes, which support the expectation of a low-energy slip system available for facile plastic deformation. Our energy frameworks calculations confirm that Form 1 displays a favorable slip system for plastic deformation. Combining our experimental and computational data indicates that the structural organization in Form 1 of CAF:NBA improves the compressibility and plasticity of the material, and from our tabletability studies, each of these contributions confers superior tableting performance to that of Form 1. Overall, mechanical and energy framework data permit a clear interpretation of the functional performance of polymorphic solids. This could serve as a robust screening approach for early pharmaceutical solid form selection and development.

中文翻译:

咖啡因共晶的压实性能和力学性能的分子解释:多态性研究。

1:1咖啡因(CAF)和3-硝基苯甲酸(NBA)共晶(CAF:NBA)显示出多态性。每个多晶型物共享相同的对接合成子,该对接合成子连接不对称单元中的单个CAF和NBA分子。但是,两个多态性修饰之间扩展的分子间相互作用是显着不同的。这些替代的相互作用拓扑可转换为不同的结构图案,机械性能和压实性能。为了帮助我们对这些共晶多晶型物的结构-力学-性能关系进行分子解释,我们结合了布里渊粉体散射(p-BLS)和能量框架计算来确定机械性能,以识别可能促进塑性变形的潜在可用滑动系统。先前报告的CAF表格1:NBA采用2D层晶体​​结构,具有传统的3.4Å层到层的分隔距离。对于形式2,将显示一维带状的柱状结构,其中CAF:NBA二聚体平行于(110)晶体学方向延伸。与层状晶体结构一致,晶型1的剪切模量相对于晶型2显着降低,此外,我们的晶型1的p-BLS光谱清楚地显示了低速剪切模式的存在,这支持了对低剪切模式的期望。 -能量滑移系统,可实现容易的塑性变形。我们的能量框架计算结果证实,表格1显示了有利的塑性变形滑移系统。结合我们的实验数据和计算数据,发现CAF:NBA形式1的结构组织提高了材料的可压缩性和可塑性,从我们的可压片性研究来看,这些贡献中的每一个都赋予了优于形式1的压片性能。总体而言,机械和能量构架数据可以清楚地解释多晶型固体的功能性能。这可以作为早期药物固体形式选择和开发的可靠筛选方法。
更新日期:2019-12-20
down
wechat
bug