当前位置: X-MOL 学术Bioconjugate Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Size-Dependent Photothermal Conversion and Photoluminescence of Theranostic NaNdF4 Nanoparticles under Excitation of Different-Wavelength Lasers.
Bioconjugate Chemistry ( IF 4.0 ) Pub Date : 2019-12-04 , DOI: 10.1021/acs.bioconjchem.9b00700
Lihua Ding 1 , Feng Ren 1 , Zheng Liu 1 , Zhilin Jiang 1 , Baofeng Yun 1 , Qiao Sun 1 , Zhen Li 1
Affiliation  

The narrow absorption and emission bands, long fluorescence lifetime, and excellent stability of rare earth nanoparticles (referred to as RE NPs) make them very attractive for multimodal imaging and therapy of cancer. Their narrow absorption requires the careful selection of laser wavelength to achieve the best performance, particularly for RE NPs simultaneously having photothermal and photoluminescent properties (e.g., Nd-based nanoparticles), which has not been investigated. Herein, we prepared a series of different-sized NaNdF4 nanoparticles (referred to as NNF NPs) (i.e., 4.7, 5.9, 12.8, and 15.6 nm) from ultrasmall nanoclusters and investigated their in vitro and in vivo size-dependent photothermal conversion and photoluminescence under irradiation by a 793 nm laser and an 808 nm laser, respectively. We find that all nanoparticles exhibited the better photothermal conversion performance under the irradiation of the 808 nm laser than under the 793 nm laser, of which 12.8 nm NNF NPs showed the best performance, and the temperature of their solution can be quickly increased from 30 °C to around 60 °C within 10 min under the irradiation of the 808 nm laser with a power intensity of 0.75 W/cm2. When we used the 793 nm laser to excite these NNF NPs, we found that all nanoparticles exhibited the stronger photoluminescence in the second near-infrared window (NIR-II) than under the excitation by the 808 nm laser, of which 15.6 nm NNF NPs possessed the strongest NIR-II luminescence. We then modified 12.8 nm NNF NPs with phospholipid carboxyl PEG and functionalized with RGD for actively targeted imaging of cancer. The NaNdF4@PEG@RGD nanoparticles (referred to as NNF-P-R NPs) have good biocompatibility, stability, and excellent targeting capability. The in vivo result show that 12.8 nm NNF NPs exhibited better photothermal conversion performance under the irradiation of the 808 nm laser, and stronger NIR-II fluorescence under irradiation of the 793 nm laser, which are consistent with the in vitro result. This work demonstrates the significance of selection of the proper laser wavelength for maximally taking advantage of RE nanoparticles for the diagnosis and treatment of cancer.

中文翻译:

在不同波长的激光激发下,热固性NaNdF4纳米颗粒的尺寸依赖性光热转换和光致发光。

窄的吸收和发射带,长的荧光寿命以及稀土纳米颗粒(称为RE NPs)的出色稳定性,使其对于癌症的多峰成像和治疗非常有吸引力。它们的窄吸收需要仔细选择激光波长以获得最佳性能,特别是对于同时具有光热和光致发光特性的RE NP(例如,基于Nd的纳米粒子),这尚未进行研究。本文中,我们从超小型纳米团簇中制备了一系列不同尺寸的NaNdF4纳米颗粒(称为NNF NP)(即4.7、5.9、12.8和15.6 nm),并研究了其体外和体内尺寸依赖性的光热转化和光致发光分别由793 nm激光和808 nm激光照射。我们发现,所有纳米粒子在808 nm激光照射下均比在793 nm激光下表现出更好的光热转换性能,其中12.8 nm NNF NPs表现最佳,其溶液温度可从30°C迅速升高在功率强度为0.75 W / cm2的808 nm激光照射下,在10分钟内将温度降至60°C左右。当我们使用793 nm激光激发这些NNF NP时,我们发现所有纳米粒子在第二个近红外窗口(NIR-II)中都比在808 nm激光激发下显示出更强的光致发光,其中808 nm激光激发了15.6 nm NNF NP。具有最强的NIR-II发光。然后,我们用磷脂羧基PEG修饰了12.8 nm NNF NP,并用RGD进行了功能化,从而主动靶向成像癌症。NaNdF4 @ PEG @ RGD纳米颗粒(称为NNF-PR NPs)具有良好的生物相容性,稳定性和出色的靶向能力。体内结果表明:12.8 nm NNF NPs在808 nm激光辐照下表现出更好的光热转换性能,在793 nm激光辐照下表现出更强的NIR-II荧光,这与体外结果一致。这项工作证明了选择合适的激光波长对于最大程度地利用RE纳米颗粒用于癌症诊断和治疗的重要性。在793 nm激光的照射下具有更强的NIR-II荧光,这与体外结果一致。这项工作证明了选择合适的激光波长对于最大程度地利用RE纳米颗粒用于癌症诊断和治疗的重要性。在793 nm激光的照射下具有更强的NIR-II荧光,这与体外结果一致。这项工作证明了选择合适的激光波长对于最大程度地利用RE纳米颗粒用于癌症诊断和治疗的重要性。
更新日期:2019-12-04
down
wechat
bug