当前位置: X-MOL 学术Biomass Bioenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk
Biomass & Bioenergy ( IF 6 ) Pub Date : 2019-11-22 , DOI: 10.1016/j.biombioe.2019.105412
Fábio Roberto Vieira , Carlos M. Romero Luna , Gretta L.A.F. Arce , Ivonete Ávila

A fixed bed reactor has been used to assess the influence of slow pyrolysis process parameters on biochar yield from rice husk. Taguchi's method (L9) was used for such a purpose, which four parameters varied according to three different levels: heating rate (β) of 5, 10 and 20 °C/min; temperature (T) of 300, 400, and 500 °C; residence time (t) of 3600, 5400 and 7200 s; rice husk mass (m) of 125, 250, and 500 g. ANOVA were utilized to verify the statistical significance of process parameters. Different physical-chemistry techniques have been performed to assess the energy potential of processing rice husk through thermochemical processes. The results showed that the highest biochar yield (37.71 %wt) was achieved through the following experimental conditions: 500 g of biomass, β = 20 °C/min, T = 300 °C, and t = 5400 s. However, the highest heating value (HHV = 23.41 MJ/kg) was obtained by using 125 g of biomass, β = 10 °C/min, T = 500 °C, and t = 5400 s. However, optimal conditions for higher fixed carbon content (60.10 %wt) were 500 g of biomass, β = 5 °C/min, T = 500 °C, and t = 7200 s. It was 49.05% higher than HHV found for raw rice husk. ANOVA results have revealed that temperature is the most significant parameter for the slow pyrolysis process. Furthermore, Taguchi's method was applied to define the levels of experimental conditions and optimize the process. Energy ratio assessment yielded values ranging between 0.38 and 1.77, which indicates that it is technically feasible to obtain energy gains through the slow pyrolysis of rice husk.



中文翻译:

使用固定床反应器优化稻壳生物炭产率的慢速热解工艺参数

固定床反应器已用于评估慢速热解工艺参数对稻壳生物炭产量的影响。Taguchi方法(L9)用于此目的,其中四个参数根据三个不同的水平而变化:加热速率(β)为5、10和20°C / min;加热速率(β)为5°C / min。温度(T)为300、400和500°C; 停留时间(t)为3600、5400和7200 s; 稻壳质量(m)为125、250和500克。利用方差分析验证过程参数的统计显着性。已经进行了不同的物理化学技术来评估通过热化学过程处理稻壳的能量潜力。结果表明,通过以下实验条件可获得最高的生物炭产量(37.71 wt%):生物质500 g,β= 20°C / min,T = 300°C,t = 5400 s。然而,通过使用125 g生物质,β= 10°C / min,T = 500°C和t = 5400 s获得最高的发热量(HHV = 23.41 MJ / kg)。但是,更高的固定碳含量(60.10 wt%)的最佳条件是500 g生物质,β= 5°C / min,T = 500°C和t = 7200 s。它比生稻壳的HHV高49.05%。方差分析结果表明,温度是缓慢热解过程的最重要参数。此外,田口的方法被用于定义实验条件的水平和优化过程。能量比评估得出的值在0.38到1.77之间,这表明通过稻壳的缓慢热解获得能量收益在技术上是可行的。更高的固定碳含量(60.10 wt%)的最佳条件是生物质500 g,β= 5°C / min,T = 500°C和t = 7200 s。它比生稻壳的HHV高49.05%。方差分析结果表明,温度是缓慢热解过程的最重要参数。此外,田口的方法被用于定义实验条件的水平和优化过程。能量比评估得出的值在0.38到1.77之间,这表明通过稻壳的缓慢热解获得能量收益在技术上是可行的。更高的固定碳含量(60.10 wt%)的最佳条件是生物质500 g,β= 5°C / min,T = 500°C和t = 7200 s。它比生稻壳的HHV高49.05%。方差分析结果表明,温度是缓慢热解过程的最重要参数。此外,Taguchi的方法被用于定义实验条件的水平和优化过程。能量比评估得出的值在0.38到1.77之间,这表明通过稻壳的缓慢热解获得能量收益在技术上是可行的。方差分析结果表明,温度是缓慢热解过程的最重要参数。此外,田口的方法被用于定义实验条件的水平和优化过程。能量比评估得出的值介于0.38和1.77之间,这表明通过稻壳的缓慢热解获得能量收益在技术上是可行的。方差分析结果表明,温度是缓慢热解过程的最重要参数。此外,田口的方法被用于定义实验条件的水平和优化过程。能量比评估得出的值在0.38到1.77之间,这表明通过稻壳的缓慢热解获得能量收益在技术上是可行的。

更新日期:2019-11-22
down
wechat
bug