当前位置: X-MOL 学术BBA Mol. Cell Biol. Lipids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Derepression of bkd by the FadR loss dictates elevated production of BCFAs and isoleucine starvation.
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids ( IF 3.9 ) Pub Date : 2019-11-21 , DOI: 10.1016/j.bbalip.2019.158577
Yijuan Sun 1 , Qiu Meng 2 , Yongting Zhang 1 , Haichun Gao 1
Affiliation  

In many γ-proteobacteria, FadR is recognized as a global transcriptional regulator: in addition to being the most prominent regulator for FA biosynthesis and degradation, the protein also mediates expression of many genes in diverse biological processes. In Shewanella oneidensis, a bacterium renowned for its respiratory versatility, FadR directly controls only a few genes. However, the FadR loss substantially increases BCFA contents and impairs growth. In this study, we showed that FadR is required to activate a number of important FA biosynthesis genes, including fabA, fabB, and fabH1. Although most of these genes are controlled by FadR in a direct manner, they are not critically responsible for the phenotypes resulting from the FadR depletion. Subsequent investigations identified BKD encoded by the bkd operon as the critical factor for enhanced BCFA production. In the absence of FadR, the bkd operon is derepressed, resulting in elevated conversion of 3MOP to 3-methylbutanoyl-CoA, one of the direct substrates for BCFA synthesis. We further showed that the growth defect of the fadR mutant is due to BCAA shortage, a scenario also attributable to excessive BKD: 3MOP, the common substrate for both BCFA and BCAA, is disproportionately used for BCFA synthesis, leading to reduced production of BCAA. Collectively, our findings reveal that the S. oneidensis FadR regulon is surely larger than previously proposed and a new mechanism by which FadR impacts bacterial physiology.

中文翻译:

FadR损失使bkd抑制导致BCFA产量增加和异亮氨酸饥饿。

在许多γ-变形杆菌中,FadR被公认为是全球转录调节因子:除了是FA生物合成和降解的最主要调节因子之外,该蛋白还介导了许多基因在多种生物过程中的表达。在以呼吸系统多功能性着称的希瓦氏菌(Shewanella oneidensis)中,FadR仅直接控制少数基因。但是,FadR的损失会大大增加BCFA的含量并损害其生长。在这项研究中,我们表明FadR是激活许多重要的FA生物合成基因所必需的,包括fabA,fabB和fabH1。尽管这些基因中的大多数都由FadR直接控制,但它们对FadR耗尽产生的表型并不是至关重要的。随后的研究确定了由bkd操纵子编码的BKD是提高BCFA产量的关键因素。在不存在FadR的情况下,bkd操纵子被阻遏,导致3MOP向3-甲基丁酰基-CoA(BCFA合成的直接底物之一)的转化率升高。我们进一步表明fadR突变体的生长缺陷是由于BCAA短缺造成的,这也是由于过量的BKD造成的:3MOP是BCFA和BCAA的共同底物,不成比例地用于BCFA合成,从而导致BCAA产量降低。总的来说,我们的发现表明,沙门氏菌FadR调节子肯定比以前提出的大,并且是FadR影响细菌生理的新机制。导致3MOP向3-甲基丁酰基-CoA(BCFA合成的直接底物之一)的转化率提高。我们进一步表明fadR突变体的生长缺陷是由于BCAA短缺造成的,这也是由于过量的BKD造成的:3MOP是BCFA和BCAA的共同底物,不成比例地用于BCFA合成,从而导致BCAA产量降低。总的来说,我们的发现表明,沙门氏菌FadR调节子肯定比以前提出的要大,并且是FadR影响细菌生理的新机制。导致3MOP向3-甲基丁酰基-CoA(BCFA合成的直接底物之一)的转化率提高。我们进一步表明fadR突变体的生长缺陷是由于BCAA短缺造成的,这也是由于过量的BKD造成的:3MOP是BCFA和BCAA的共同底物,不成比例地用于BCFA合成,从而导致BCAA产量降低。总的来说,我们的发现表明,沙门氏菌FadR调节子肯定比以前提出的要大,并且是FadR影响细菌生理的新机制。导致BCAA产量减少。总的来说,我们的发现表明,沙门氏菌FadR调节子肯定比以前提出的大,并且是FadR影响细菌生理的新机制。导致BCAA产量减少。总的来说,我们的发现表明,沙门氏菌FadR调节子肯定比以前提出的大,并且是FadR影响细菌生理的新机制。
更新日期:2019-11-21
down
wechat
bug