当前位置: X-MOL 学术BBA Mol. Cell Res. › 论文详情
Aerobic glycolysis is a metabolic requirement to maintain the M2-like polarization of tumor-associated macrophages
BBA Molecular Cell Research ( IF 4.739 ) Pub Date : 2019-11-21 , DOI: 10.1016/j.bbamcr.2019.118604
Natália M. de-Brito, Julia Duncan-Moretti, Hayandra C. da-Costa, Roberta Saldanha-Gama, Heitor A. Paula-Neto, Gabriel Dorighello, Rafael L. Simões, Christina Barja-Fidalgo

Macrophages (MO) are versatile cells, assuming distinct functional phenotypes depending on the activating stimulus and the microenvironment. The differential activation of macrophages is supported by profound intracellular metabolic changes, being well accepted that the M1/M(LPS+IFN-γ) phenotype rely on aerobic glycolysis, while M2/M(IL-4) macrophages depend on oxidative metabolism. On the other hand, although tumor-associated macrophages (TAMs) are characterized by their high expression of M2/M(IL-4) markers, is currently unclear whether TAMs present the same oxidative metabolic profile of M2/M(IL-4) cells. Herein, we demonstrate for the first time that despite their high expression of M2/M(IL-4) markers, TAMs show high glycolytic activity, with high lactate secretion similar to the M1/M(LPS+ IFN-γ) phenotype. This activity seems to be essential for the M2 profile of TAMs, since the inhibition of glycolysis, but not the impairment of the oxidative phosphorylation or pentose phosphate pathway, diminished the expression of M2/M(IL-4) markers. These novel data indicate that TAMs, although are usually phenotyped as M2/M(IL-4)-like macrophages, they are metabolically distinct from these cells, being rather similar to M1/M(LPS+IFN-γ) macrophages, depending on the glycolytic metabolism to support their profile and functions.
更新日期:2019-11-21

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug